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Abstract

Regression models with spillover effects generally cannot be estimated using ordi-
nary least squares given the simultaneity that results from interactions among indi-
viduals. Instead, they are fitted using two-stage least squares (Kelejian and Prucha,
1998; Bramoullé et al., 2009), generalized method of moments (Liu et al., 2010), (quasi-
)maximum likelihood typically under the normality assumption (Lee, 2004) or adaptive
estimation (Robinson, 2010).

In this article, we propose a semiparametrically efficient estimator, based on the
Local Asymptotic Normality theory of Le Cam (1960) and on the work of Hallin et al.
(2006, 2008) on residuals ranks-and-signs, that only requires strong unimodality of the
errors’ distribution as a distributional assumption. Monte Carlo simulations show that
the suggested estimator performs well in comparison to competing estimators. A trade
regression from Behrens et al. (2012) is used to illustrate how empirical findings might
greatly change when the Gaussian distribution is not imposed.

1 Introduction

It is well known that models that explicitly account for endogenous spillover effects, such
as SAR models in the spatial econometrics literature, cannot be estimated using Ordinary
Least Squares. This has led to the development of various estimators based on Two Stages
Least Squares (TSLS), the Generalized Method of Moments (GMM), Maximum Likelihood

∗Vincenzo Verardi is Associated Researcher of the FNRS (Fonds National de la Recherche Scientifique)
and gratefully aknowledges their financial support.
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(ML), and adaptive estimations (ADP) (see Kelejian and Prucha, 1998, 1999; Bramoullé
et al., 2009; Lee, 2004, 2007; Liu et al., 2010; Robinson, 2010; Lee and Robinson, 2020).

ML estimation yields the most efficient estimator if the distribution of the error term
coincides with the assumed one (typically the Gaussian). However, if the error term’s
distribution is unknown, the ML estimator cannot be computed.

Lee (2004) develops a quasi-ML (QML) estimator assuming normal errors, which takes
into consideration the third and fourth moments of the distribution in the Fisher Informa-
tion matrix. This Gaussian QML estimator remains consistent even if the error distribution
is non-normal, but its efficiency is lower than that of the ML estimator under the true dis-
tribution.1

Using both linear and quadratic moments, Liu et al. (2010) introduce a GMM estimator
that does not require any assumption about the distribution of error terms. When the error
terms are normally distributed, the authors show that this estimator is as efficient as the
ML estimator. Furthermore, it performs generally better than the Gaussian QML estimator
when the normality assumption is not satisfied.

Robinson (2010) proposes a different methodology, using an adaptive estimator of the
parameters of interest, that relies on series estimates of the score function. This method
does not need to specify a parametric distribution for the error term and, under a set of
assumptions detailed later, leads to an efficient estimator. Similarly, Lee and Robinson
(2020) present an adaptive estimator designed specifically for pure spatial models that
do not include explanatory variables. This estimator is developed for a wide variety of
interaction models, including spatial autoregressive, spatial moving average, and matrix
exponential spatial specifications.

In this paper, we propose a semiparametric approach, where the innovation density is
viewed as an infinite-dimensional nuisance parameter in the regression model. In such a
semiparametric context, one can define an estimator for the regression model’s vector of
parameters that asymptotically approaches the semiparametric efficiency bound, provided
that a suitable function of the residuals is used.

More precisely, relying on the concept of Local Asymptotic Normality (LAN) introduced
by Le Cam (1960) and on the work of Hallin et al. (2006, 2008), we build a ranks-and-
signs-based (R&S) semiparametric estimator for linear models with spillovers which is
asymptotically semiparametrically efficient.

We then perform Monte Carlo experiments to evaluate the behavior of the proposed
estimator in finite samples and observe that it performs well compared to existing alterna-
tives.

Finally, using a trade regression proposed by Behrens et al. (2012), we illustrate the
usefulness of the developed estimator in applied research. In one of their intermediate
empirical results, relying on QML, the authors show that the endogenous (spillover) effect

1The consistency of QML under Normality comes from the fact that the Gaussian distribution belongs
to the linear exponential family (see Gourieroux et al., 1984).
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is non-statistically significant. Using the R&S estimator, we get a point estimate that is
2.5 times higher and strongly statistically different from 0.

The rest of the paper is organized as follows. Section 2 presents the Local Asymp-
totic Normality property on which the estimator is built. Section 3 presents the model to
be estimated and details how the semiparametric estimation procedure is obtained. This
section also derives the fully semiparametrically efficient estimator for the model under
study. Section 4 presents the practical implementation of the proposed estimator. Sec-
tion 5 is dedicated to Monte Carlo experiments which compare the R&S estimator with
TSLS, QML, GMM, and ADP. The efficiency of the R&S is comparable to that of the
ML estimator when errors are normally distributed. However, when the error component
is distributed according to another distribution function, the R&S estimator exhibits a
substantially higher efficiency compared to the alternative estimators. Section 6 applies
the R&S estimator to a trade model developed by Behrens et al. (2012) and compares the
point estimates and their standard errors to those obtained in the original paper by relying
on the Gaussian QML of Lee (2004) as well as to GMM and ADP estimators. Finally,
section 7 concludes.

2 LAN property

In this section we rely on Hallin (1996) and Van der Vaart (1998) to briefly describe the LAN
property.2 The notations and definitions adopted are those of Hallin (1996) (from page 129

onwards). Let y(n) =
(
y
(n)
1 , . . . , y

(n)
n

)T
, n ∈ N0, be a sequence of observations described by

the sequence of statistical models E(n) =
(
Rn,B(Rn),P(n)

)
, where P(n) =

{
P
(n)
θ : θ ∈ Θ

}
is a parametric family of probability distributions defined on (Rn,B(Rn)) and indexed by
the parameter vector θ ∈ Θ (with Θ an open set of RK); observation y(n) is a random

vector, of distribution P
(n)
θ .

Consider the sequences of probability distributions P
(n)
θ and P

(n)

θ+ν(n)τ (n) , where ν(n)

is a (K ×K) non singular matrix such that ∥ν(n)∥ → 0 for n → ∞ (∥ · ∥ is the ma-
trix norm induced by the euclidean norm3), and τ (n) is a (K × 1) real vector such that
supn∈N0

(τ (n))Tτ (n) <∞. The logarithm of the likelihood ratio is shown in equation (1):

Λ
(n)

θ+ν(n)τ (n)/θ
= ln

dP(n)

θ+ν(n)τ (n)

dP
(n)
θ

 . (1)

Le Cam (1986) highlighted that a very general structure characterized by the behavior

of Λ
(n)

θ+ν(n)τ (n)/θ
is sufficient (and almost necessary) for the study of the asymptotic per-

2The interested reader may also consult Le Cam (1986) and Le Cam and Yang (2000).
3∥A∥ = sup

∥x∥=1

∥Ax∥ = (max{eigenvalues of AAT})1/2.
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formances of almost all statistical inferential procedures for θ. This is called the LAN
property.

Definition. (cf. Definition 4.1, page 131 in Hallin (1996)) The sequence of parametric
statistical models E(n) =

(
Rn,B(Rn),P(n)

)
is said to be locally asymptotically normal if,

for all θ ∈ Θ, there exists a sequence ∆(n)(θ) of K-dimensional and (y(n),θ)-measurable
random vectors, and a (K ×K) symmetric positive semi-definite matrix I(θ), such that,

under P
(n)
θ , as n→ ∞:

(i) for every sequence τ (n) such that supn∈N0
(τ (n))Tτ (n) <∞,

Λ
(n)

θ+ν(n)τ (n)/θ
= (τ (n))T∆(n)(θ)− 1

2
(τ (n))TI(θ)τ (n) + oP(1) ; (2)

(ii) ∆(n)(θ)
L−→ N (0, I(θ)) .

The vector ∆(n)(θ) is called the central sequence. It is only defined up to oP(1) (under

P
(n)
θ , as n→ ∞).
The LAN property of the sequence of statistical models E(n) implies namely that, if

θ̃
(n)

is a
√
n-consistent estimator of θ, then the one-step estimator

θ̂
(n)

= θ̃
(n)

+
1√
n

(
I(θ̃

(n)
)
)−1

∆(n)(θ̃
(n)

)

is an asymptotically efficient estimator of θ (see, for instance, Hallin et al., 2008, p.399).

In other words, θ̂
(n)

is asymptotically equivalent to the ML estimator of θ: under P
(n)
θ , as

n→ ∞,
√
n
(
θ̂
(n)

− θ
)

L→ N
(
0, (I(θ))−1

)
. (3)

According to Le Cam (1970), the conditions for LAN to hold are less restrictive than the
conventional differentiability conditions needed for maximum likelihood. He has shown that
LAN only requires the density function to be differentiable in quadratic mean. Broadly
speaking, quadratic mean differentiability (QMD) requires a density function to be differen-
tiable almost everywhere. The Laplace distribution, for example, is not differentiable at all
points but nevertheless exhibits the QMD property. This makes it theoretically unsuitable
for ML but appropriate for a one-step estimator based on the LAN property.
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3 Efficient estimation of the semiparametric linear model
with spillovers

3.1 The model

Consider the following linear model with endogenous spillover effects.4 For i = 1, . . . , n,

y
(n)
i = (x

(n)
i )Tβ + λ

n∑
j=1
j ̸=i

w
(n)
ij y

(n)
j + ε

(n)
i , (4)

where n is the considered sample size, x
(n)
i =

(
1, x

(n)
i1 , . . . , x

(n)
iK

)T
is the vector of explana-

tory variables for individual i and β = (β0, β1, . . . , βK)T ∈ RK+1 is the associated vector of

regression parameters,
∑n

j=1
j ̸=i

w
(n)
ij y

(n)
j represents endogenous spillover effects and λ is the

associated regression coefficient. The definition of the relevant interaction scheme, modeled

by the elements w
(n)
ij of the general connectivity matrix W(n), depends on the question un-

der study. In the social-network literature, peers are individuals who influence the behavior
of a specific individual i, such as friends, geographic neighbors, housemates, or coworkers.
In the context of international trade, Behrens et al. (2012) show that links between regions

should be modeled by their relative share of the population. Finally, ε
(n)
1 , . . . , ε

(n)
n are i.i.d.

error terms with unknown distribution function F and density f assumed, without any
loss of generality, to have a median of zero (this is needed to ensure the identification of
the intercept β0 of the model).

The definition and properties of the ranks-and-signs-based estimator proposed here
require some regularity conditions detailed below. Assumption 1 relates to the interaction

terms w
(n)
ij and on the endogenous effects parameter λ, while Assumption 2 concerns the

covariate vectors x
(n)
i ; these first two assumptions come from Lee (2004). Assumption 3

specifies regularity conditions for the unknown distribution of the error terms.

4As soon as we abstract from a group interaction scheme (with groups of equal size) and assume an
exogenous interaction scheme, the model can include contextual effects (neighbors’ characteristics) without
additional difficulties.
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Assumption 1.

(i) The elements w
(n)
ij of the matrix W(n) are at most of order 1/h(n) — they are

O(1/h(n)) — uniformly in all i, j, where the rate sequence {h(n)} is such that the

ratio h(n)/n→ 0 as n→ ∞.5 As a normalization, w
(n)
ii = 0 for all i.

(ii) Let In be the (n × n)-identity matrix. In model (4), the matrix In − λW(n) is

nonsingular. Moreover, the sequences
{
W(n)

}
and

{(
In − λW(n)

)−1
}
are uniformly

bounded in both row and column sums (Horn and Johnson, 1985).

(iii) In the sequence
{(

In − ℓW(n)
)−1
}
, matrices

(
In − ℓW(n)

)−1
are bounded in either

row or column sums, uniformly in ℓ in a compact parameter space Λ. In consequence,
the true value of parameter λ in model (4) is assumed to belong to the interior of Λ.

The definition of the parameter space Λ in the above assumption depends on W(n).
For a connectivity matrix with real eigenvalues, Λ may be defined as a compact subset

of
(
1/ω

(n)
max, 1/ω

(n)
min

)
, where ω

(n)
min and ω

(n)
max are respectively the minimal and maximal

eigenvalues of W(n). To ensure the same parameter space for λ for different connectivity
matrices, it is most of the time normalized. Kelejian and Prucha (2010) proposes two
matrix norms, namely the spectral radius and the minimum between the absolute row and
column sum norms, which allow to restrict Λ to be a compact subspace of (−1, 1).6

Assumption 2. The elements of x
(n)
i are uniformly bounded constants for all n. The

limn→∞
∑n

i=1 x
(n)
i (x

(n)
i )T/n exists and is non-singular.

Remark. By writing model (4) for the whole sample, we compute its reduced form as:

y(n) =
(
In − λW(n)

)−1 (
X(n)β + ε(n)

)
,

where y(n) =
(
y
(n)
1 , . . . , y

(n)
n

)T
, X(n) =

(
x
(n)
1 , . . . ,x

(n)
n

)T
, and ε(n) =

(
ε
(n)
1 , . . . , ε

(n)
n

)T
.

Further, we have

W(n)y(n) = G(n)(λ)
(
X(n)β + ε(n)

)
, (5)

with G(n)(λ) = W(n)
(
In − λW(n)

)−1
. Let θ = (βT, λ)T, W

(n)
i� be the ith row of matrix

W(n), G
(n)
i� (λ) the ith row of matrix G(n)(λ) and e

(n)
i (θ) (i = 1, . . . , n) be the residuals as-

sociated with the value θ of the parameters vector, with e(n)(θ) =
(
e
(n)
1 (θ), . . . , e

(n)
n (θ)

)T
.

5That is, for some real constant c, there exists a finite integer N such that, for all n ≥ N , |h(n)w
(n)
ij | < c

for all i, j (see, e.g. White, 1984, p.14).
6The row-normalization is also widely used in applied work. However, unless it is theoretically grounded

(see, for instance, Patacchini and Zenou, 2012), or for special cases, such as assigning the same number of
neighbors to each observation, this normalization should not be used as it introduces misspecification in
the model (see Neumayer and Plümper, 2016).
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We may write:

e
(n)
i (θ) = y

(n)
i − (x

(n)
i )Tβ − λW

(n)
i� y(n) (6)

= y
(n)
i − (x

(n)
i )Tβ − λG

(n)
i� (λ)

(
X(n)β + e(n)(θ)

)
= y

(n)
i − (x

(n)
i )Tβ − λG

(n)
i� (λ)X(n)β − λ

n∑
j=1

G
(n)
ij (λ)e

(n)
j (θ). (7)

Assumption 3. The distribution function F and density function f of the i.i.d. error terms

ε
(n)
i (i = 1, . . . , n) should satisfy the following regularity conditions:

(i) F (0) =
∫ 0
−∞ f(e)de = 1/2; (ii) µf =

∫∞
−∞ ef(e)de <∞ and 0 < νf =

∫∞
−∞ e2f(e)de <

∞; (iii) f is absolutely continuous with (almost everywhere) derivative f ′ and finite Fisher

information for location If =
∫∞
∞ ϕ2f (e)f(e)de, where ϕf (·) = −f ′(·)

f(·) ; (iv) f is strongly

unimodal, i.e. function ϕf is non-decreasing; (v) Kf =
∫∞
−∞ ϕ2f (e)ef(e)de < ∞ and 0 <

Qf =
∫∞
−∞ ϕ2f (e)e

2f(e)de <∞.

Let F0 = {f : R → [0,∞) such that f satisfies Assumption 3}. Since the density of
errors in model (4) is unknown but assumed to belong to F0, it plays the role of a nonpara-
metric (infinite dimensional) nuisance. Hence, specification (4) defines a semiparametric
model

E(n)
0 =

(
Rn,B(Rn),

{
P
(n)
f ;θ : f ∈ F0,θ = (βT, λ)T ∈ RK+1 × Λ

})
.

Under P
(n)
f ;θ, the residuals e

(n)
i (θ) (i = 1, . . . , n) defined by (6) are i.i.d. with (marginal)

density f ∈ F0.
It is important to emphasize that the median, not the mean, is used as the location

parameter of the innovation density function, and is assumed to be 0.
The rationale behind selecting the zero-median over the traditional zero-mean assump-

tion is motivated by the fact that the former allows us to identify a simple group of trans-
formations of Rn that ”generates” our semiparametric SAR model and, consequently, to
define a semiparametrically efficient estimator of θ = (βT, λ)T using the so-called maximal
invariant associated with this group of transformations. This will be further detailed in
Section 3.4.

Let us finally introduce some additional notations that will be used throughout the
text:

• For a probability density function f ∈ F0: and for u ∈ (0, 1), φf (u) = ϕf
(
F−1(u)

)
.

• For a square (n × n)-matrix A(n): A
(n)
i� is the ith row of A(n), A

(n)
� = 1

n

∑n
i=1A

(n)
i�

is the average (1 × n)-vector of the n rows of A(n), A
(n)
�� = 1

n2

∑n
i=1

∑n
j=1Aij is the

average of the n2 components of matrix A(n), and tr(A(n)) is the trace of A(n).
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3.2 Semiparametric efficiency

If we consider that the error term density is known and equal to a specific f , the problem
of the estimation of the parameters vector θ = (βT, λ)T occurs in the context of the
parametric submodel

E(n)
0;f =

(
Rn,B(Rn),

{
P
(n)
f ;θ : θ = (βT, λ)T ∈ RK+1 × Λ

})
of E(n)

0 . In this parametric context, maximum likelihood estimation of θ is straightforward.

The log-likelihood function associated to E(n)
0;f is

lnL
(
θ
∣∣∣y(n),W(n),X(n)

)
= ln

∣∣∣det(In − λW(n)
)∣∣∣+ n∑

i=1

ln f
(
e
(n)
i (θ)

)
. (8)

Estimating θ efficiently in a semiparametric setting is more difficult. Keep in mind
that when the error distribution is treated as an unknown nuisance component in the
model, there is usually a loss of precision in the estimation of the relevant parameters.
One possible intuitive explanation for this efficiency loss is that small changes to both the
relevant parameters and the model’s nuisance component can have a comparable effect on

the distribution of the observations y
(n)
i (i = 1, . . . , n) and hence, cannot be distinguished,

even asymptotically. Knowing the efficiency bounds for the estimation of the parameters
of interest in semiparametric models is of fundamental importance (see for instance Newey,
1990; Bickel et al., 1993) as they offer a benchmark against which to evaluate the asymptotic
efficiency of any semiparametric estimator.

As explained below, since any parametric submodel E(n)
0;f is LAN, asymptotically efficient

inference for θ in the semiparametric model E(n)
0 can be conducted on the basis of a ranks-

and-signs based central sequence for θ.

3.3 Parametrically efficient estimation of θ under P
(n)
f ;θ

For every density function f ∈ F0, the sequence of parametric submodels

E(n)
0;f =

(
Rn,B(Rn),

{
P
(n)
f ;θ : θ = (βT, λ)T ∈ RK+1 × Λ

})
is LAN.7 Hence, classical likelihood inference for θ in the parametric submodel E(n)

0;f can be
based on the central sequence

∆
(n)
f (θ) =

1√
n

∂

∂θ

{
lnL

(
θ
∣∣∣y(n),W(n),X(n)

)}
,

7Taking τ (n) = τ for all n, and ν(n) = 1√
n
IK , where IK is the identity matrix of dimension K, we obtain

the decomposition (2) of the logarithm of the likelihood ratio, Λ
(n)

θ+τ/
√
n/θ

= ln

(
L(θ+τ/

√
n|y(n),W(n),X(n) )

L(θ|y(n),W(n),X(n) )

)
,

using a second order Taylor expansion of lnL
(
θ + τ/

√
n
∣∣∣y(n),W(n),X(n)

)
around θ.
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which can be decomposed as

∆
(n)
f (θ) =

(
∆

(n)
f ;β(θ)

∆
(n)
f ;λ(θ)

)

=

 1√
n

∑n
i=1

∂
∂β

{
ln f

(
e
(n)
i (θ)

)}
1√
n
∂
∂λ

{
ln
∣∣det (In − λW(n)

)∣∣}+ 1√
n

∑n
i=1

∂
∂λ

{
ln f

(
e
(n)
i (θ)

)} 
=

 1√
n

∑n
i=1 ϕf

(
e
(n)
i (θ)

)
x
(n)
i

− 1√
n
tr
(
G(n)(λ)

)
+ 1√

n

∑n
i=1 ϕf

(
e
(n)
i (θ)

)
W

(n)
i� y(n)

 ,

where tr
(
G(n)(λ)

)
is the trace of matrix G(n)(λ). Under P

(n)
f ;θ, as n→ ∞,

∆
(n)
f (θ)

L−→ N (0, If (θ)) ,

where If (θ) is the (parametric) Fisher information matrix for θ given by

If (θ) =

(
If ;β(θ) If ;β,λ(θ)

(If ;β,λ(θ))
T If ;λ(θ)

)
,

where

If ;β(θ) = If lim
n→∞

{
1

n

n∑
i=1

x
(n)
i (x

(n)
i )T

}
,

If ;β,λ(θ) = If lim
n→∞

{
1

n

n∑
i=1

x
(n)
i

(
G

(n)
i� (λ)X(n)β

)}

+Kf lim
n→∞

{
1

n

n∑
i=1

x
(n)
i G

(n)
ii (λ)

}
+ Ifµf lim

n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

x
(n)
i G

(n)
ij (λ)

 ,

9



and

If ;λ(θ) = If lim
n→∞

{
1

n

n∑
i=1

(
G

(n)
i� (λ)X(n)β

)2}

+ (Qf − 1) lim
n→∞

{
1

n

n∑
i=1

(
G

(n)
ii (λ)

)2}
+ Ifνf lim

n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
ij (λ)

)2
+ 2Kfµf lim

n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ii (λ)G

(n)
ij (λ)

+ lim
n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ij (λ)G

(n)
ji (λ)


+ Ifµ2

f lim
n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i,j

G
(n)
ij (λ)G

(n)
ik (λ)


+ 2Kf lim

n→∞

{
1

n

n∑
i=1

(
G

(n)
i� (λ)X(n)β

)
G

(n)
ii (λ)

}

+ 2 Ifµf lim
n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
i� (λ)X(n)β

)
G

(n)
ij (λ)

 ,

with µf , νf , If , Kf , and Qf defined in Assumption 3.8

In particular, if θ̃
(n)

is a
√
n-consistent preliminary estimator of θ, then

θ̂
(n)

f = θ̃
(n)

+
1√
n

(
If (θ̃

(n)
)
)−1

∆
(n)
f (θ̃

(n)
)

is an asymptotically parametrically efficient estimator of θ: under P
(n)
f ;θ, as n→ ∞,

√
n
(
θ̂
(n)

f − θ
)

L→ N
(
0, (If (θ))

−1
)
.

3.4 Semiparametrically efficient estimation of θ under P
(n)
f ;θ

As ∆
(n)
f (θ) is in general not properly centered under density h ̸= f (hence, it does not

exhibit central limit behavior), inference based on this central sequence is not valid when
density f used for the score function ϕf (·) does not coincide with the true error density;

the estimator θ̂
(n)

f is no longer
√
n-consistent.

8Appendix A.1 contains some details on the derivation of the different terms.
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Typically, as explained in Hallin et al. (2008), semiparametric theory optimally solves

this issue by projecting the central sequence ∆
(n)
f (θ) onto the so-called tangent spaces

that are related to the variations of the error term density f (see Bickel et al., 1993).
These projections produce score functions that are semiparametrically efficient, defining a

semiparametric central sequence denoted as ∆
(n)∗
f (θ). However, Hallin and Werker (2003)

show that, in the presence of a suitable group of transformations that “generates” any
fixed-θ submodel of the semiparametric model, a semiparametric central sequence is more
readily and intuitively obtained, with the added benefit of not being dependent on any

particular distribution, by conditioning ∆
(n)
f (θ) on the maximal invariant for this group

of transformations. In this paper, we rely on this second approach to determine ∆
(n)∗
f (θ).

Consider the fixed-θ submodel E(n)
0;θ =

(
Rn,B(Rn),

{
P
(n)
f ;θ : f ∈ F0

})
of E(n)

0 as in Hallin

et al. (2006). This submodel is characterized by (i) the residual function r
(n)
θ (y(n)) =(

e
(n)
1 (θ), . . . , e

(n)
n (θ)

)T
= e(n)(θ) defined by (6) and (ii) a concept of white noise with

(marginal) density f such that the one defined in Assumption 3: y(n) has distribution P
(n)
f ;θ

if and only if r
(n)
θ (y(n)) is white noise with (marginal) density f . Denote by R(n)(θ) =(

R
(n)
1 (θ), . . . , R

(n)
n (θ)

)T
and by s(n)(θ) =

(
s
(n)
1 (θ), . . . , s

(n)
n (θ)

)T
the vector of ranks and

the vector of signs associated with the residuals e
(n)
1 (θ), . . . , e

(n)
n (θ). Define N

(n)
+ (θ) =

♯
{
i : s

(n)
i (θ) = +1

}
and N

(n)
− (θ) = ♯

{
i : s

(n)
i (θ) = −1

}
as the numbers of positive and

negative residuals, respectively. Clearly, under P
(n)
f ;θ (for any f ∈ F0), R

(n)(θ) is uniformly

distributed on the set of the n! permutations of {1, . . . , n}, N (n)
− (θ) +N

(n)
+ (θ) = n almost

surely, andN
(n)
+ (θ) andN

(n)
− (θ) are both binomial random variables Bin(n, 1/2). Moreover,

it is well known that the vector of ranks R(n)(θ) is stochastically independent of the order

statistics, and thus of N(n)(θ) =
(
N

(n)
− (θ), N

(n)
+ (θ)

)
.

Let T0 be the set of all continuous, strictly monotone increasing transformations t : R → R
such that lime→±∞ t(e) = ±∞ and t(0) = 0. Defining the transformation t(n) : Rn → Rn
by t(n)(e1, . . . , en) =

(
t(e1), . . . , t(en)

)
for t ∈ T0, we have that the group of order preserving

transformations (acting on Rn)

T
(n)
0;θ =

{(
r
(n)
θ

)−1
◦ t(n) ◦ r(n)θ ; t ∈ T0

}
is a generating group for E(n)

0;θ . This generating group has for maximal invariant the vectors

of residuals ranks R(n)(θ) and signs s(n)(θ), or, equivalently, the vectors R(n)(θ) and
N(n)(θ).

In this context, following the conditioning argument of Hallin and Werker (2003), we

get a semiparametric central sequence, under P
(n)
f ;θ, by taking the expectation of ∆

(n)
f (θ)
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conditionally to R(n)(θ) and N(n)(θ), as stated in Proposition 1 below.9

Proposition 1. Under P
(n)
f ;θ, as n→ ∞,

E
[
∆

(n)
f (θ)

∣∣∣N(n)(θ),R(n)(θ)
]
= ∆

(n)∗
f (θ) + oP(1)

= ∆̃
(n)∗
f (θ) + oP(1),

where ∆
(n)∗
f (θ) =

(
∆

(n)∗
f ;β (θ)

∆
(n)∗
f ;λ (θ)

)
with

∆
(n)∗
f ;β (θ) =

1√
n

n∑
i=1

ϕf

(
e
(n)
i (θ)

)(
x
(n)
i − x(n)

)
+ 2f(0)x(n) 1√

n

n∑
i=1

s
(n)
i (θ) (9)

and, defining g(n)(λ) = n2G
(n)
�� (λ)− tr

(
G(n)(λ)

)
,

∆
(n)∗
f ;λ (θ) =

1√
n

n∑
i=1

ϕf

(
e
(n)
i (θ)

)(
G

(n)
i� (λ)−G

(n)

� (λ)
)
X(n)β

+
1√
n

n∑
i=1

ϕf

(
e
(n)
i (θ)

)
e
(n)
i (θ)

(
G

(n)
ii (λ)−

tr
(
G(n)(λ)

)
n

)

+
1√
n

n∑
i=1

n∑
j=1
j ̸=i

ϕf

(
e
(n)
i (θ)

)
e
(n)
j (θ)

(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)

+ 2f(0)
1√
n

n∑
i=1

s
(n)
i (θ)

(
G

(n)

� (λ)X(n)β + µf
g(n)(λ)

n

)
, (10)

whereas ∆̃
(n)∗
f (θ) =

(
∆̃

(n)∗
f ;β (θ)

∆̃
(n)∗
f ;λ (θ)

)
with

∆̃
(n)∗
f ;β (θ) =

1√
n

n∑
i=1

φf

(
R̃

(n)
i (θ)

)(
x
(n)
i − x(n)

)
+ 2f(0)x(n) 1√

n

(
N

(n)
+ (θ)−N

(n)
− (θ)

)
(11)

9Appendix A.2 presents the most important steps to prove Proposition 1.
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and

∆̃
(n)∗
f ;λ (θ) =

1√
n

n∑
i=1

φf

(
R̃

(n)
i (θ)

)(
G

(n)
i� (λ)−G

(n)

� (λ)
)
X(n)β

+
1√
n

n∑
i=1

φf

(
R̃

(n)
i (θ)

)
F−1

(
R̃

(n)
i (θ)

)(
G

(n)
ii (λ)−

tr
(
G(n)(λ)

)
n

)

+
1√
n

n∑
i=1

n∑
j=1
j ̸=i

φf

(
R̃

(n)
i (θ)

)
F−1

(
R̃

(n)
j (θ)

)(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)

+ 2f(0)
1√
n

(
N

(n)
+ (θ)−N

(n)
− (θ)

)(
G

(n)

� (λ)X(n)β + µf
g(n)(λ)

n

)
, (12)

where, as defined in Hallin et al. (2006), for i = 1, . . . , n,

R̃
(n)
i (θ) =I

[
s
(n)
i (θ) = −1

]{1

2

R
(n)
i (θ)

N
(n)
− (θ) + 1

}

+ I
[
s
(n)
i (θ) = +1

]{1

2
+

1

2

R
(n)
i (θ)− (n−N

(n)
+ (θ))

N
(n)
+ (θ) + 1

}
.

∆
(n)∗
f (θ) and ∆̃

(n)∗
f (θ) are two versions of the semiparametric (under P

(n)
f ;θ) central

sequence for θ in the semiparametric model E(n)
0 . From now on, we will focus our atten-

tion to the ranks-and-signs version ∆̃
(n)∗
f (θ), because of its distribution freeness stated in

Proposition 2.

Proposition 2. Under P
(n)
h;θ, as n→ ∞, for any h ∈ F0,

∆̃
(n)∗
f (θ)

L−→ N
(
0, I∗f (θ)

)
, (13)

where I∗f (θ) is the information matrix for θ, under P
(n)
f ;θ, in the semiparametric model E(n)

0 ,

that is, I∗f (θ)
−1 coincides with the semiparametric efficiency bound for the estimation of

θ, under P
(n)
f ;θ; I

∗
f (θ) is given by

I∗f (θ) =

(
I∗f ;β(θ) I∗f ;β,λ(θ)(

I∗f ;β,λ(θ)
)T

I∗f ;λ(θ)

)
,

where

I∗f ;β(θ) = If lim
n→∞

{
1

n

n∑
i=1

(
x
(n)
i − x(n)

)(
x
(n)
i − x(n)

)T}
+ (2f(0))

2
lim
n→∞

{
x(n)

(
x(n)

)T}
,

13



I∗f ;β,λ(θ) = If lim
n→∞

{
1

n

n∑
i=1

(
x
(n)
i − x(n)

)(
G

(n)
i� (λ)−G

(n)

� (λ)
)
X(n)β

}

+Kf lim
n→∞

{
1

n

n∑
i=1

(
x
(n)
i − x(n)

)(
G

(n)
ii (λ)−

tr
(
G(n)(λ)

)
n

)}

+ Ifµf lim
n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
x
(n)
i − x(n)

)(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)
+ (2f(0))

2
lim
n→∞

{(
G

(n)

� (λ)X(n)β + µf
g(n)(λ)

n

)
x(n)

}
,
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and

I∗f ;λ(θ) = If lim
n→∞

{
1

n

n∑
i=1

[(
G

(n)
i� (λ)−G

(n)

� (λ)
)
X(n)β

]2}

+ (Qf − 1) lim
n→∞

 1

n

n∑
i=1

(
G

(n)
ii (λ)−

tr
(
G(n)(λ)

)
n

)2


+ Ifνf lim
n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)2


+ 2Kfµf lim

n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
ii (λ)−

tr
(
G(n)(λ)

)
n

)(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)
+ lim
n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)(
G

(n)
ji (λ)− g(n)(λ)

n(n− 1)

)
+ Ifµ2

f lim
n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i,j

(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)(
G

(n)
ik (λ)− g(n)(λ)

n(n− 1)

)
+ 2Kf lim

n→∞

{
1

n

n∑
i=1

(
G

(n)
i� (λ)−G

(n)

� (λ)
)
X(n)β

(
G

(n)
ii (λ)−

tr
(
G(n)(λ)

)
n

)}

+ 2 Ifµf lim
n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
i� (λ)−G

(n)

� (λ)
)
X(n)β

(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)
+ (2f(0))

2
lim
n→∞

[
G

(n)

� (λ)X(n)β + µf
g(n)(λ)

n

]2
,

with µf , νf , If , Kf , and Qf defined in Assumption 3.10

Note that, in accordance with the invariance properties of ranks and signs, the limiting
distribution (13) depends only on the reference density f , and not on the true density h.

3.5 Fully semiparametrically efficient estimation of θ in E (n)
0

It follows from Proposition 2 that the ranks-and-signs-based central sequence ∆̃
(n)∗
f (θ)

allows to construct inference procedures for θ that are semiparametrically efficient if the

10Appendix A.3 presents the main computation steps of I∗f (θ).
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density function f used to define the score function coincides with the true underlying error

density. For instance, if θ̃
(n)

is a
√
n-consistent estimator of θ, then the one-step estimator

θ̂
(n)∗
f = θ̃

(n)
+

1√
n

(
I∗f (θ̃

(n)
)
)−1

∆̃
(n)∗
f (θ̃

(n)
) (14)

is, under P
(n)
f ;θ, asymptotically normal with zero mean and covariance matrix

(
I∗f (θ)

)−1

and, consequently, θ̂
(n)∗
f is an asymptotically efficient estimator of θ, under P

(n)
f ;θ, in the

semiparametric model E(n)
0 .

But our objective is to define a uniformly semiparametrically efficient estimator of θ

in E(n)
0 , i.e. an estimator that is semiparametrically efficient, regardless of the true error

density. For this, we need a fully semiparametric central sequence that is asymptotically

equivalent to ∆̃
(n)∗
f (θ) under P

(n)
f ;θ, but that no longer depends on the unknown density f .

A way to obtain a completely semiparametric central sequence ∆̃
(n)∗

(θ) consists in

replacing the density function f in ∆̃
(n)∗
f (θ) by a kernel estimate computed from the

residuals e
(n)
i (θ̃

(n)
), i = 1, . . . , n. Then, replacing f by its estimate in the central sequence

and the information matrix involved in (14), we define the one-step estimator

θ̂
(n)∗

= θ̃
(n)

+
1√
n

(
Î(n)∗(θ̃

(n)
)
)−1

∆̃
(n)∗

(θ̃
(n)

); (15)

for any f ∈ F0, θ̂
(n)∗

= θ̂
(n)∗
f + oP(1) under P

(n)
f ;θ, as n→ ∞, i.e., θ̂

(n)∗
is a fully semipara-

metrically efficient estimator of θ in E(n)
0 .

As mentioned in the introduction, Robinson (2010) develops two adaptive estimators,
based on series approximations of the score function, designed to be efficient even when
the distribution of the error term is unknown. Several important differences exist between
these adaptive estimators and the approach proposed in this paper.

To start with, the first estimator (A) proposed by Robinson (2010) has been derived
within the framework of interaction matrices which satisfy conditions similar to those
imposed by Lee (2002). By contrast, the second estimator (B) requires that either the
distribution of the error term or the row-normalized interaction matrix be symmetric. The
method proposed here merely requires the density function to be strongly unimodal without
other assumption on W than those described in Assumption 1. Furthermore, Robinson
(2010) assumes that the density function is differentiable everywhere. In our approach,
assumption 3 only requires the distribution to be differentiable in quadratic mean (hence
differentiable once almost everywhere).

Finally, the series approximation of the score function necessitates choosing the function
that serves as the basis for the series, which Robinson (2010) limits to two alternatives.
When the true density distribution is not known, both the basis function and its power must
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be selected. Our method for estimating the density function is based on a data-dependent
variable bandwidth kernel density, which does not require a specific parametrization of the
scoring function.

4 Practical implementation

Implementation of the R&S approach we propose requires first to select a preliminary
estimator. Next, we have to estimate the unknown error density function f relying on the
preliminary residuals and compute the central sequence and information matrix to obtain
a one-step efficient estimator. Despite the complexity of the formulas presented in section
3, they are explicitly defined and the integrals can be approximated numerically.11 In this
section, we thus focus on the first two points and then present a refinement procedure used
in finite samples.

4.1 The preliminary estimator θ̃
(n)

of θ

The only condition imposed on the preliminary estimator of θ is to be
√
n-consistent.

Therefore, we start with the TSLS estimator of Kelejian and Prucha (1998); Bramoullé
et al. (2009).12 We also correct the preliminary estimated intercept to ensure that residuals
have zero-median.

4.2 Data dependent variable-bandwidth kernel estimation of error’s den-
sity

We use a variable-bandwidth (Gaussian) kernel to estimate the density function of the
error term. When point concentration varies significantly across locations, as is the case for
skewed and/or heavy-tailed distributions, a fixed bandwidth estimator may be problematic
as it could result in excessive smoothing and loss of detail in highly populated areas and
under-smoothing and excess variability in regions with low point density.

The formula used for the variable-bandwidth used is bwi = bw×
{
Mgeom/f̂prel (ei)

}0.5
,

where Mgeom is the geometric mean of a preliminary fixed bandwidth (bw) density estimate

f̂prel evaluated at each point (see Abramson, 1982; Van Kerm, 2003). The bandwidth of the
preliminary density estimator is chosen according a rule of thumb due to Silverman, namely

11As such, the computation complexity of the proposed estimator is mainly driven by the choice of the
preliminary estimator.

12We could also start from a GMM estimator (Lee, 2007) or even from the QML estimator of Lee (2004)
but the initial gain in precision by relying on GMM or QML instead of TSLS does not have any effect on
our one-step estimator. Naturally, if no exogenous regressors are present, TSLS cannot be used since there
is no internal instrument available and QML or GMM should be considered as a starting point.
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bw = 0.9min
(
σ̂, IQR1.349

)
n−

1
5 where σ̂ corresponds to the estimated standard deviation and

IQR is the fitted interquartile range.13

4.3 Iterative procedure

To improve the one-step estimator θ̂
(n)∗

presented in (15), we propose a refinement pro-

cedure. The residuals e
(n)
i (θ̂

(n)∗
) (i = 1, . . . , n) are computed and used to estimate once

again the underlying density function f and to evaluate the log-likelihood function in (8)

at the parameter value θ̂
(n)∗

.

Then, we update θ̂
(n)∗

by applying (15) in which θ̂
(n)∗

acts as the preliminary estimator,
and we evaluate (8) for this new estimate of θ. This iterative process stops (usually very
fast) when the log-likelihood value stops increasing.

5 Simulations

The experimental design considered is

y
(n)
i = β0 + β1x

(n)
i + λW

(n)
i� y(n) + ε

(n)
i , i = 1, . . . , n (16)

where the x
(n)
i ’s are generated once (and kept constant over all the simulations) from a

standard normal. We also have that β0 = β1 = 1, and λ spans values from −0.7 to 0.7,
increasing in steps of 0.2, and also includes the value 0. We consider two different connec-
tion patterns between observations, both based on random coordinates from two U(0, 10)
distributions (also kept constant across the simulations). The first interaction scheme is
binary and considers the 10 nearest neighbors constructed from Euclidian distance. The
second connectivity scheme is constructed from the inverse distance truncated to the 15
nearest data points. Finally, these 2 matrices have been normalized using the spectral
radius norm of Kelejian and Prucha (2010).

Six alternative probability distributions are considered for the error term which could
be encountered in practice:

(a) Standard normal distribution;

(b) Student distribution with two degrees of freedom;

(c) Median-centered Lognormal distribution, with µ = 0 and σ2 = 1;

(d) Mixed Distribution of a (zero median) shifted Beta(2,2) and a Student distribution
with two degrees of freedom;

13In Silverman (1986, p.48), IQR is divided by 1.34 instead of 1.349.
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Figure 1: Distributions used in simulations

(e) Standard Laplace distribution;

(f) Bimodal mixture normal f(e) = 0.5√
2π

exp
(
− (e−3)2

2

)
+ 0.5√

2π
exp

(
− (e+3)2

2

)
.

The last distribution, also used in Robinson (2010), is considered to see how the R&S
estimator behaves when the strong unimodality assumption is severely violated. Figure 1
presents the shape of all considered distributions with the normal distribution reproduced
in the dashed line to serve as a benchmark.

In total, 108 alternative scenarios are considered, and each of them has been replicated
1000 times. The simulation setup is run for 2 sample sizes: n = 300 and n = 900.14

For each setup, we assess the performance of λ̂ and β̂1 for five alternative estimators:
TSLS, QML, efficient GMM, ADP, and the R&S semiparametric estimator proposed here.15

The summary measures considered to assess the performances of estimators are the median

14All simulations have been run with Matlab R2019a on the calculation center of the Université de Lille
(Mésocentre de Calcul Scientifique Intensif de l’Université de Lille). Moreover, the proposed R&S estimator
has been programmed in Stata, Matlab, and R software.

15For the normal distribution setup, we use the ML estimator of Lee (2004).
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difference of the estimated coefficients to the true values as a measure of their bias and
the interquartile range (divided by 1.349 to guarantee Gaussian consistency towards the
standard deviation) of the point estimates as a measure of dispersion.

Only simulations related to the largest sample size (n = 900) and the inverse distance
truncated to the 15 closest data points connectivity matrix are presented in the core of
the paper.16 As far as the constant term is concerned, since it cannot be compared across
estimation methods, we do not present the graphs related to the simulations here. However,
generally speaking, its bias and dispersion over repeated samples are small for the R&S
(except for the case of the normal bimodal distribution which is not surprising as the basic
assumptions of the procedure are not met).

The TSLS estimator is computed using the 2 first-order neighborhood’s characteristics
as instruments for the endogenous effects (Kelejian and Prucha, 1998; Bramoullé et al.,
2009). The efficient GMM estimator of Liu et al. (2010) is obtained by an iterated procedure
used to refine the estimation of the covariance matrix of moment conditions. Computing
the ADP estimator of Robinson (2010) requires selecting the series function and power
used to approximate the scoring function. Relying on the Monte Carlo estimation results
presented in Robinson (2010) we have decided to use expression (2.29) and power L = 4
for the series function, specifically a polynomial of fourth degree. We also have decided to
focus on estimator A rather than B as, according to Robinson (2010, pp. 13–14), the latter
does not show a clear superiority with respect to the former.17

Finally, the TSLS approach presented above serves as preliminary estimator for both
the ADP and the R&S estimators.

5.1 Bias of the coefficients estimators

The bias of the R&S estimator of λ is negligible for all setups and is less sensitive to the
values of λ than the other estimators (see Figure 2). The bias in the estimation of β1 turns
out to be minimal for all the estimators and all the setups, whatever the value of λ (see
Figure 3).

5.2 Relative dispersion

Figures 4 and 5 compare the dispersion over repeated samples of the point estimates of the
parameters λ and β1, using the five estimation method presented above.

The R&S estimator of λ is the one with the lowest dispersion in all cases except, as
anticipated, when the errors are normal. This result comes from the fact that the dispersion
of a semiparametrically efficient estimator will generally be higher than for a parametric

16All remaining simulations are presented in a supplementary file, which also contains, for the R&S
estimator, the comparison of the dispersion over repeated samples (computed as the interquartile range
normalized by 1.349) of the point estimates of the parameters with the median of the fitted standard errors,
to evaluate the bias of the standard errors.

17For the GMM, ADP and R&S estimators, we set the number of iterations to maximum one hundred.
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Figure 2: Bias of λ̂, n = 900 and truncated inverse distance matrix

Figure 3: Bias of β̂1, n = 900 and truncated inverse distance matrix
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Figure 4: Dispersion of λ̂, n = 900 and truncated inverse distance matrix

Figure 5: Dispersion of β̂1, n = 900 and truncated inverse distance matrix
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efficient one (under the true distribution). Nevertheless, we do not observe a large difference
between ML (and GMM) and the R&S estimator. The ADP performs worse, but this is
likely due to the choice of a fourth-order polynomial (while the normal score is a linear
polynomial).

The dispersion of the R&S estimator of λ is much less sensitive to the true value
of this parameter than the other estimators. We also note that the estimator with the
second lowest dispersion varies depending on the error distribution. For instance, the ADP
estimator is the second most efficient for the case of mixtures distributions while it is
dominated by QML and GMM when the error term is distributed according to the Laplace
distribution.

Finally, the R&S estimator is the most efficient for the bimodal mixture of normal
distributions, even if this distribution does not satisfy the strong unimodality assumption.
This finding is interesting as it indicates some robustness of the proposed procedure with
respect to the violation of its core assumption.

The ADP estimator for this distribution exhibits good performance, even if its disper-
sion is on average (over the values of λ) 31% larger than for the proposed R&S estimator.

For parameter β1, the dispersion is lowest for R&S in all cases with non-normal errors.

6 Illustration

To illustrate the practical utility of the R&S estimation framework, we rerun a trade
regression, initially developed by Behrens et al. (2012) (BEK hereafter). These authors
theoretically derive a trade model using spatial econometrics techniques to assess the effect
of the Canada-U.S. border on trade flows. Their sample includes 30 US states and 10
Canadian regions, which leads to a sample of size n = 1600. In one of their intermediary
results (Table III, p.788), they report the estimation of a SAR specification, shown in (17):

ln(Zij) = β0 + β1dij + β2 ln(wi) + β3bij + λ
n∑
k=1
k ̸=i

Lk
L

ln(Zkj) + εij , (17)

where Zij is the GDP-standardized manufacturing exports from region i to j, dij is the
great circle distance (in kilometers) between regional and provincial capitals. The internal
distance is measured as one-fourth the distance of a region’s capital from the nearest capital
of another region (see Anderson and van Winkoop, 2003).18 The regression also includes
wi, which measures the average hourly manufacturing wage in region i and the dummy
variable bij , which takes a value of 1 if region i belongs to Canada and j is part of the U.S.
or vice-versa and 0 otherwise. 19 Finally, the exports from i to j depend on the exports

18Behrens et al. (2012) consider also alternative measures of internal distances as robustness analysis.
However, in this illustration, we focus on the first definition but all the results hold for the 2 other definitions.

19To account for zero flow observations in their logarithmic bilateral export model, BEK add value one
to these flows and introduce a dummy variable to identify the original zero flows among the regressors
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of other regions k to region j, where the connectivity between k and j is constructed from
the share of population in region k over the total sample (Lk/L), and further normalized
by its spectral radius. Our objective here is to compare the estimation results of the SAR
model obtained by QML under the normality assumption as estimated by BEK to the
R&S estimator. For the sake of completeness, we also provide comparison with the GMM
estimator of Liu et al. (2010) and the A adaptive estimator of Robinson (2010).

The first column in Table 1 presents the estimation results reported in BEK, based on
QML under normality. We observe that the interaction effect λ is not statistically different
from 0. In Figure 6, we show the qqplot of the residuals based on the QML estimation.
The tails of the empirical distribution differ greatly from those of a Gaussian distribution,
indicating that a substantial gain in efficiency can be achieved. Columns 2 and 3 of Table
1 present estimation results obtained by efficient GMM and by ADP. GMM is slightly
more precise than QML, even though qualitatively similar. We also note that λ becomes
significant for ADP. The last column of Table 1 reports the results of the R&S estimator.

Table 1: Comparison of estimation results
Dependent variable: ln(Zij)

QML GMM ADP R&S

Constant -13.890 -12.274 -12.230
(0.713) (0.691) - (0.472)
[-19.496] [-17.767] [-25.898]

dij -1.223 -1.280 -1.209 -1.208
(0.034) (0.033) (0.030) (0.024)
[-35.984] [-39.278] [-40.508] [-50.753]

ln(wi) -1.173 -1.759 -1.203 -1.264
(0.180) (0.170) (0.155) (0.124)
[-6.631] [-10.370] [-7.759] [-10.220]

bij -1.052 -0.804 -1.074 -1.199
(0.066) (0.063) (0.058) (0.046)
[-15.961] [-12.726] [-18.647] [-25.972]

λ 0.030 0.045 0.051 0.109
(0.030) (0.029) (0.023) (0.019)
[1.012] [1.577] [2.164] [5.682]

Rel. eff 1 1.084 1.358 2.107

Notes: standard errors between parentheses and t-stats be-
tween square brackets. Rel. eff. computes the relative effi-
ciency of each estimator compared to QML.

The R&S point estimate of the spillover effect is significantly greater compared to the
original paper (0.109 vs 0.03), while its standard error decreases substantially (0.019 vs
0.03). This suggests that the absence of significative spillover effect in the original results
might come from the QML estimation method inefficiency. We also note that the standard

(not reported in the model specification), yielding a total of five regression parameters and a constant to
estimate.
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Figure 6: QQ plot of the structural residuals

errors of all the other regression coefficients are much smaller as well when using the R&S
estimator.

Finally, the bottom panel of Table 1 presents the relative efficiency of each of the four
estimation methods with respect to QML. This measure of relative efficiency is computed
as (see Serfling, 2011):

Rel. effq =

det
(
I(θ)−1

QML

)
det
(
I(θ)−1

q

)
1/Kcomp

, q = QML,GMM,ADP,R&S,

with I(θ)−1
q being the asymptotic covariance matrix of the qth estimator and Kcomp the

number of estimates to be compared (five in this case). We do not include the constant
here as it is viewed as a nuisance parameter by Robinson (2010).

In this empirical application, GMM is slightly more efficient than QML (around 8%),
while ADP improves the efficiency by around 36%. The R&S estimator is approximately
two times more efficient than QML.

7 Conclusions

Due to its inherent simultaneity, the linear model with spillovers cannot generally be esti-
mated by ordinary least squares and calls for more advanced procedures such as two-stage
least squares, generalized method of moments, quasi-maximum likelihood, or adaptive es-
timation.

When the error distribution is known (and possesses the appropriate differentiability
properties), the maximum likelihood framework provides the most efficient estimator. How-
ever, if the distribution of the errors is unknown, maximum likelihood estimation becomes
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infeasible. In such cases, the quasi-maximum likelihood method under normal errors still
produces consistent estimators, albeit not efficient.

In this paper, we develop a new estimator based on the concept of Local Asymptotic
Normality and previous research by Hallin and Werker (2003) and Hallin et al. (2006,
2008). This estimator, constructed from the ranks and signs of the residuals of a prelimi-
nary

√
n-consistent estimator, is asymptotically semiparametrically efficient. Monte Carlo

experiments show that it performs generally better than the other methods considered,
once the assumption of a normal error distribution is relaxed.

When applied to the trade regression model developed by Behrens et al. (2012), this
new approach produces more accurate point estimates than those obtained in the original
paper, and provides a statistically significant spillover effect that was not identified in the
original paper, based on quasi-maximum likelihood.

In future research, we plan to relax the i.i.d errors assumption and propose R&S esti-
mators addressing heteroskedasticity and/or clustering.
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A Proofs

A.1 Parametric Fisher information matrix for θ under P
(n)
f ;θ

As shown in Section 3.3, the central sequence for θ in the parametric submodel E(n)
0;f is

∆
(n)
f (θ) =

(
∆

(n)
f ;β(θ)

∆
(n)
f ;λ(θ)

)
,

with

∆
(n)
f ;β(θ) =

1√
n

n∑
i=1

ϕf

(
e
(n)
i (θ)

)
x
(n)
i
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and

∆
(n)
f ;λ(θ) = − 1√

n
tr
(
G(n)(λ)

)
+

1√
n

n∑
i=1

ϕf

(
e
(n)
i (θ)

)
W

(n)
i� y(n).

Since, in view of (5),

W
(n)
i� y(n) = G

(n)
i� (λ)

(
X(n)β + e(n)(θ)

)
= G

(n)
i� (λ)X(n)β +

n∑
j=1

G
(n)
ij (λ)e

(n)
j (θ),

we have that
∆

(n)
f ;λ(θ) = L

(n)
1;f (θ) + L

(n)
2;f (θ) + L

(n)
3;f (θ) + L

(n)
4;f (θ),

with

L
(n)
1;f (θ) =

1√
n

n∑
i=1

ϕf

(
e
(n)
i (θ)

)
G

(n)
i� (λ)X(n)β,

L
(n)
2;f (θ) =

1√
n

n∑
i=1

ϕf

(
e
(n)
i (θ)

)
e
(n)
i (θ)G

(n)
ii (λ),

L
(n)
3;f (θ) =

1√
n

n∑
i=1

n∑
j=1
j ̸=i

ϕf

(
e
(n)
i (θ)

)
e
(n)
j (θ)G

(n)
ij (λ),

L
(n)
4;f (θ) = − 1√

n
tr
(
G(n)(λ)

)
.

Under P
(n)
f ;θ , the error terms e

(n)
1 (θ), . . . , e

(n)
n (θ) are i.i.d. with density function f and we

27



have, for all i = 1, . . . , n:

E
[
e
(n)
i (θ)

]
=

∫ ∞

−∞
ef(e)de

def
= µf ;

E
[(
e
(n)
i (θ)

)2]
=

∫ ∞

−∞
e2f(e)de

def
= νf ;

E
[
ϕf

(
e
(n)
i (θ)

)]
=

∫ ∞

−∞
ϕf (e)f(e)de = −

∫ ∞

−∞
f ′(e)de = − [f(e)]∞−∞ = 0;

E
[
ϕf

(
e
(n)
i (θ)

)
e
(n)
i (θ)

]
=

∫ ∞

−∞
ϕf (e)ef(e)de = −

∫ ∞

−∞
f ′(e)ede

= − [f(e)e]∞−∞ +

∫ ∞

−∞
f(e)de = 0 + 1 = 1;

E
[
ϕ2f

(
e
(n)
i (θ)

)]
=

∫ ∞

−∞
ϕ2f (e)f(e)de

def
= If ;

E
[
ϕ2f

(
e
(n)
i (θ)

)
e
(n)
i (θ)

]
=

∫ ∞

−∞
ϕ2f (e)ef(e)de

def
= Kf ;

E
[
ϕ2f

(
e
(n)
i (θ)

)(
e
(n)
i (θ)

)2]
=

∫ ∞

−∞
ϕ2f (e)e

2f(e)de
def
= Qf .

It follows that, under P
(n)
f ;θ ,

E
[
∆

(n)
f ;β(θ)

]
= 0

and

E
[
∆

(n)
f ;λ(θ)

]
= E

[
L
(n)
1;f (θ)

]
+ E

[
L
(n)
2;f (θ)

]
+ E

[
L
(n)
3;f (θ)

]
+ E

[
L
(n)
4;f (θ)

]
= 0 +

1√
n

n∑
i=1

G
(n)
ii (λ) + 0− 1√

n
tr
(
G(n)(λ)

)
=

1√
n
tr
(
G(n)(λ)

)
− 1√

n
tr
(
G(n)(λ)

)
= 0.

Moreover, under P
(n)
f ;θ ,

E
[
∆

(n)
f ;β(θ)

(
∆

(n)
f ;β(θ)

)T]
= If

{
1

n

n∑
i=1

x
(n)
i (x

(n)
i )T

}
and

E
[
∆

(n)
f ;β(θ)∆

(n)
f ;λ(θ)

]
= E

[
∆

(n)
f ;β(θ)L

(n)
1;f (θ)

]
+ E

[
∆

(n)
f ;β(θ)L

(n)
2;f (θ)

]
+ E

[
∆

(n)
f ;β(θ)L

(n)
3;f (θ)

]
+ E

[
∆

(n)
f ;β(θ)L

(n)
4;f (θ)

]
,
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where

E
[
∆

(n)
f ;β(θ)L

(n)
1;f (θ)

]
= If

{
1

n

n∑
i=1

x
(n)
i

(
G

(n)
i� (λ)X(n)β

)}
,

E
[
∆

(n)
f ;β(θ)L

(n)
2;f (θ)

]
= Kf

{
1

n

n∑
i=1

x
(n)
i G

(n)
ii (λ)

}
,

E
[
∆

(n)
f ;β(θ)L

(n)
3;f (θ)

]
= Ifµf


1

n

n∑
i=1

n∑
j=1
j ̸=i

x
(n)
i G

(n)
ij (λ)

 ,

E
[
∆

(n)
f ;β(θ)L

(n)
4;f (θ)

]
= 0.

Finally, under P
(n)
f ;θ ,

E
[(

∆
(n)
f ;λ(θ)

)2]
= E

[(
L
(n)
1;f (θ)

)2]
+ E

[(
L
(n)
2;f (θ)

)2]
+ E

[(
L
(n)
3;f (θ)

)2]
+ E

[(
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(n)
4;f (θ)

)2]
+ 2E

[
L
(n)
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2;f (θ)

]
+ 2E

[
L
(n)
1;f (θ)L
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]
+ 2E

[
L
(n)
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4;f (θ)

]
+ 2E

[
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[
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2;f (θ)L

(n)
4;f (θ)

]
+ 2E

[
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(n)
4;f (θ)

]
,
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where

E
[(
L
(n)
1;f (θ)

)2]
= If
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1

n

n∑
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(
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(n)
i� (λ)X(n)β
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(n)
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= Ifνf
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n∑
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3;f (θ)L

(n)
4;f (θ)

]
= 0,

and

E
[
L
(n)
2;f (θ)L

(n)
4;f (θ)
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= −

(
tr
(
G(n)(λ)

))2
n

.

The expression for the (parametric) Fisher information matrix If (θ) follows directly from

the above results.

A.2 Semiparametric central sequence for θ under P
(n)
f ;θ

Throughout this section, to prevent the notations from becoming overly complex , we

simply write e
(n)
i , s

(n)
i , R

(n)
i , N(n), R(n), G(n), ... for e

(n)
i (θ), s

(n)
i (θ), R

(n)
i (θ), N(n)(θ),

R(n)(θ), G(n)(λ), ...
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A.2.1 Component associated with β

Let us first consider

∆
(n)
f ;β =
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i

)
x
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i =
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)
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i .

By Proposition 3.2 of Hallin et al. (2006), we have that, under P
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f ;θ , as n→ ∞,
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Moreover, Lemma 3.1 — more precisely, relation (3.7) — of Hallin et al. (2006) implies

that, under P
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f ;θ , as n→ ∞,
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Hence,
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under P
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f ;θ , as n→ ∞.

A.2.2 Component associated with λ
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(i) Following similar developments of Section A.2.1, we get that, under P
(n)
f ;θ , as n→ ∞,
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(ii) Applying Proposition 3.2 of Hallin et al. (2006) once again, we have that, under P
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n

{
2
N

(n)
−
n

µ−ψf
+ 2

N
(n)
+

n
µ+ψf

− µψf

}
+ oP(1),

with

E
[
E
[
L
(n)
2;f

∣∣∣N(n),R(n)
]]

= E
[
L
(n)
2;f

]
=

tr
(
G(n)

)
√
n

,

ψf (u) = φf (u)F
−1(u),

µψf
=

∫ 1

0

ψf (u)du =

∫ 1

0

φf (u)F
−1(u)du =

∫ 1

0

ϕf
(
F−1(u)

)
F−1(u)du

=

∫ ∞

−∞
ϕf (e)ef(e)de = 1,

µ−
ψf

=

∫ 1/2

0

ψf (u)du =

∫ 0

−∞
ϕf (e)ef(e)de = −

∫ 0

−∞
f ′(e)ede

= − [f(e)e]
0
−∞ +

∫ 0

−∞
f(e)de = 0 +

1

2
=

1

2
,

µ+
ψf

=

∫ 1

1/2

ψf (u)du =

∫ ∞

0

ϕf (e)ef(e)de = −
∫ ∞

0

f ′(e)ede

= − [f(e)e]
∞
0 +

∫ ∞

0

f(e)de = 0 +
1

2
=

1

2
.
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Hence, under P
(n)
f ;θ , as n→ ∞,

E
[
L
(n)
2;f

∣∣∣N(n),R(n)
]
=

tr
(
G(n)

)
√
n

+
1√
n

n∑
i=1

φf

(
F (e

(n)
i )
)
F−1

(
F (e

(n)
i )
)(

G
(n)
ii −

tr
(
G(n)

)
n

)

+
tr
(
G(n)

)
√
n

{
N

(n)
−
n

+
N

(n)
+

n
− 1

}
+ oP(1).

Since, under P
(n)
f ;θ , N

(n)
− +N

(n)
+

a.s.
= n, we have that

E
[
L
(n)
2;f

∣∣∣N(n),R(n)
]

=
tr
(
G(n)

)
√
n

+
1√
n

n∑
i=1

φf

(
F (e

(n)
i )
)
F−1

(
F (e

(n)
i )
)(

G
(n)
ii −

tr
(
G(n)

)
n

)
+ oP(1). (20)

Applying again result (3.7) of Hallin et al. (2006), we write that, under P
(n)
f ;θ , as n→ ∞,

E
[
L
(n)
2;f

∣∣∣N(n),R(n)
]

=
tr
(
G(n)

)
√
n

+
1√
n

n∑
i=1

φf

(
R̃

(n)
i )
)
F−1

(
R̃

(n)
i

)(
G

(n)
ii −

tr
(
G(n)

)
n

)
+ oP(1). (21)

(iii) Let us now consider the third term of ∆
(n)
f ;λ:

L
(n)
3;f =

1√
n

n∑
i=1

n∑
j=1
j ̸=i

ϕf

(
e
(n)
i

)
e
(n)
j G

(n)
ij

=
1√
n

n∑
i=1

n∑
j=1
j ̸=i

φf

(
F (e

(n)
i )
)
F−1

(
F (e

(n)
j )
)
G

(n)
ij .

Define the linear “serial” sign-and-rank statistics of order 2, based on the so-called exact
and approximate serial score functions,

S
(n)
exact = E

[
L
(n)
3;f

∣∣∣N(n),R(n)
]

=
1√
n

n∑
i=1

n∑
j=1
j ̸=i

E
[
ϕf

(
e
(n)
i

)
e
(n)
j

∣∣∣N(n),R(n)
]
G

(n)
ij

and

S(n)
appr =

1√
n

n∑
i=1

n∑
j=1
j ̸=i

φf

(
R̃

(n)
i

)
F−1

(
R̃

(n)
j

)
G

(n)
ij .
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Under a straightforward generalisation of Lemma 4.1 of Hallin et al. (2006), we have

that, under P
(n)
f ;θ , as n→ ∞,

S
(n)
exact = L

(n)
3;f − E

[
L
(n)
3;f

∣∣∣e(n)(�)

]
+ E

[
S
(n)
exact

∣∣∣N(n)
]
+ oP(1) (22)

= S(n)
appr − E

[
S(n)
appr

∣∣∣N(n)
]
+ E

[
S
(n)
exact

∣∣∣N(n)
]
+ oP(1), (23)

where e
(n)
(�) =

(
e
(n)
(1) , . . . , e

(n)
(n)

)T
is the vector of order statistics associated with e(n).

Note first that

E
[
L
(n)
3;f

∣∣∣e(n)(�)

]
=

1√
n

n∑
i=1

n∑
j=1
j ̸=i

E
[
ϕf

(
e
(n)
i

)
e
(n)
j

∣∣∣e(n)(�)

]
G

(n)
ij

=

 1√
n

n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ij


 1

n(n− 1)

n∑
k=1

n∑
ℓ=1
ℓ ̸=k

ϕf

(
e
(n)
(k)

)
e
(n)
(ℓ)



=

 1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ij


 1√

n

n∑
i=1

n∑
j=1
j ̸=i

ϕf

(
e
(n)
i

)
e
(n)
j

 .

Since
n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ij =

n∑
i=1

n∑
j=1

G
(n)
ij −

n∑
i=1

G
(n)
ii = n2G�� − tr

(
G(n)

)
def
= g(n),

we have that, under P
(n)
f ;θ ,

L
(n)
3;f − E

[
L
(n)
3;f

∣∣∣e(n)(�)

]
=

1√
n

n∑
i=1

n∑
j=1
j ̸=i

ϕf

(
e
(n)
i

)
e
(n)
j

(
G

(n)
ij − g(n)

n(n− 1)

)
. (24)

Moreover, under P
(n)
f ;θ ,

E
[
S
(n)
exact

∣∣∣N(n)
]
= E

[
E
[
L
(n)
3;f

∣∣∣N(n),R(n)
] ∣∣∣N(n)

]
= E

[
L
(n)
3;f

∣∣∣N(n)
]

= E
[
E
[
L
(n)
3;f

∣∣∣s(n) ] ∣∣∣N(n)
]

= E

 1√
n

n∑
i=1

n∑
j=1
j ̸=i

E
[
ϕf

(
e
(n)
i

)
e
(n)
j

∣∣∣s(n)i , s
(n)
j

]
G

(n)
ij

∣∣∣∣∣∣∣∣N
(n)

 ,
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with

E
[
ϕf

(
e
(n)
i

)
e
(n)
j

∣∣∣s(n)i , s
(n)
j

]
= I

[
s
(n)
i = −1, s

(n)
j = −1

] ∫ 0

−∞
ϕf (e)2f(e)de

∫ 0

−∞
e2f(e)de

+ I
[
s
(n)
i = −1, s

(n)
j = +1

] ∫ 0

−∞
ϕf (e)2f(e)de

∫ ∞

0

e2f(e)de

+ I
[
s
(n)
i = +1, s

(n)
j = −1

] ∫ ∞

0

ϕf (e)2f(e)de

∫ 0

−∞
e2f(e)de

+ I
[
s
(n)
i = +1, s

(n)
j = +1

] ∫ ∞

0

ϕf (e)2f(e)de

∫ ∞

0

e2f(e)de.

Since
∫ 0
−∞ ϕf (e)2f(e)de = −2f(0) and

∫∞
0 ϕf (e)2f(e)de = 2f(0), we have that

E
[
ϕf

(
e
(n)
i

)
e
(n)
j

∣∣∣s(n)i , s
(n)
j

]
= 4f(0)s

(n)
i

{
I
[
s
(n)
j = −1

] ∫ 0

−∞
ef(e)de+ I

[
s
(n)
j = +1

] ∫ ∞

0
ef(e)de

}
and, consequently,

E
[
S
(n)
exact

∣∣∣N(n)
]
= 4f(0)

1√
n

n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ij

(
−P
[
s
(n)
i = −1, s

(n)
j = −1

∣∣∣N(n)
] ∫ 0
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ef(e)de

+ P
[
s
(n)
i = +1, s

(n)
j = −1

∣∣∣N(n)
] ∫ 0
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ef(e)de

− P
[
s
(n)
i = −1, s

(n)
j = +1

∣∣∣N(n)
] ∫ ∞

0

ef(e)de

+P
[
s
(n)
i = +1, s

(n)
j = +1

∣∣∣N(n)
] ∫ ∞

0

ef(e)de

)
= 4f(0)

g(n)√
n

(
−
N

(n)
− (N

(n)
− − 1)

n(n− 1)

∫ 0

−∞
ef(e)de+

N
(n)
+ N

(n)
−

n(n− 1)

∫ 0

−∞
ef(e)de

−
N

(n)
− N

(n)
+

n(n− 1)

∫ ∞

0

ef(e)de+
N

(n)
+ (N

(n)
+ − 1)

n(n− 1)

∫ ∞

0

ef(e)de

)

= 4f(0)
g(n)

n

√
n

(
N

(n)
+ N

(n)
− −N

(n)
− (N

(n)
− − 1)

n(n− 1)

∫ 0

−∞
ef(e)de

+
N

(n)
+ (N

(n)
+ − 1)−N

(n)
− N

(n)
+
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∫ ∞

0
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)
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But

√
n
N

(n)
+ N

(n)
− −N

(n)
− (N

(n)
− − 1)

n(n− 1)
=
N

(n)
−

(
N

(n)
+ −N

(n)
− + 1

)
√
n(n− 1)

=
N

(n)
−

n− 1

N
(n)
+ −N

(n)
−√

n
+

N
(n)
−√

n(n− 1)

=
1

2

N
(n)
+ −N

(n)
−√

n
+ oP(1)

and, similarly,

√
n
N

(n)
+ (N

(n)
+ − 1)−N

(n)
− N

(n)
+

n(n− 1)
=
N

(n)
+

(
N

(n)
+ −N

(n)
− − 1

)
√
n(n− 1)

=
N

(n)
+

n− 1

N
(n)
+ −N

(n)
−√

n
−

N
(n)
+√

n(n− 1)

=
1

2

N
(n)
+ −N

(n)
−√

n
+ oP(1).

Hence,

E
[
S
(n)
exact

∣∣∣N(n)
]
= 2f(0)

g(n)

n

N
(n)
+ −N

(n)
−√

n

∫ ∞

−∞
ef(e)de+ oP(1)

= 2f(0)µf
g(n)

n

1√
n

n∑
i=1

s
(n)
i + oP(1). (25)

Combining (24) and (25), equation (22) gives that, under P
(n)
f ;θ , as n→ ∞,

E
[
L
(n)
3;f

∣∣∣N(n),R(n)
]
=

1√
n

n∑
i=1

n∑
j=1
j ̸=i
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(
e
(n)
i

)
e
(n)
j

(
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)
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n

1√
n
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Finally, consider E
[
S
(n)
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∣∣N(n)
]
. We have

E
[
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]
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[
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For i ̸= j,

E
[
φf

(
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(n)
i

)
F−1

(
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(n)
j

) ∣∣∣s(n)
]

= E
[
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(
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(n)
i

)
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(
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[
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(n)
− − 1)

N
(n)
−∑

k=1

N
(n)
−∑

ℓ=1
ℓ ̸=k

φf

1

2

k

N
(n)
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− N
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N
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−∑
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N
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Since

P
[
s
(n)
i = −1, s
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]
=
N
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P
[
s
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s
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]
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(n)
+ − 1)
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,
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we have, for i ̸= j,

E
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=
1

n(n− 1)
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n∑
ℓ=1
ℓ̸=k

φf

(
R̃

(n)
k

)
F−1

(
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ℓ
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.

So,

E
[
S(n)
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]
=
g(n)√
n

1
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n∑
i=1

n∑
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(
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)
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In conclusion, using (23), (27), and (25), we derive that, under P
(n)
f ;θ , as n→ ∞,

E
[
L
(n)
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=
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n
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(iv) Now, from (18), (20), and (26) we may conclude that, under P
(n)
f ;θ , as n→ ∞,

E
[
∆

(n)
f ;λ

∣∣∣N(n),R(n)
]
= ∆
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f ;λ + oP(1),

with ∆
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f ;λ given by (10). Similarly, we may conclude from (19), (21), and (28) that, under

P
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f ;θ , as n→ ∞,

E
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with ∆̃
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f ;λ given by (12).
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A.3 Semiparametric Fisher information matrix for θ under P
(n)
f ;θ

Consider the central sequence ∆̃
(n)∗
f (θ) defined in Proposition 1. Note first that, under

P
(n)
h;θ , as n→ ∞,
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where

∆
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∆
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(
H(e

(n)
j (θ))

)(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)
,

L
(n)∗
4;f (θ) = 2f(0)

1√
n

n∑
i=1

s
(n)
i (θ)

(
G

(n)

� (λ)X(n)β + µf
g(n)(λ)

n

)
.

40



Under P
(n)
h;θ , the terms H(e

(n)
i (θ)) (i = 1, . . . , n) are i.i.d. U(0, 1), which implies that, for

all i = 1, . . . , n:

E
[
F−1

(
H(e

(n)
i (θ))

)]
=

∫ 1

0

F−1(u)du =

∫ ∞

−∞
ef(e)de

def
= µf ;

E
[(
F−1

(
H(e

(n)
i (θ))

))2]
=

∫ 1

0

(
F−1(u)

)2
du =

∫ ∞

−∞
e2f(e)de

def
= νf ;

E
[
φf

(
H(e

(n)
i (θ))

)]
=

∫ 1

0

φf (u)du =

∫ 1

0

ϕf
(
F−1(u)

)
du

=

∫ ∞

−∞
ϕf (e)f(e)de = 0;

E
[
φf

(
H(e

(n)
i (θ))

)
F−1

(
H(e

(n)
i (θ))

)]
=

∫ 1

0

φf (u)F
−1(u)du =

∫ ∞

−∞
ϕf (e)ef(e)de = 1;

E
[
φ2
f

(
H(e

(n)
i (θ))

)]
=

∫ 1

0

φ2
f (u)du =

∫ ∞

−∞
ϕ2f (e)f(e)de

def
= If ;

E
[
φ2
f

(
H(e

(n)
i (θ))

)
F−1

(
H(e

(n)
i (θ))

)]
=

∫ 1

0

φ2
f (u)F

−1(u)du =

∫ ∞

−∞
ϕ2f (e)ef(e)de

def
= Kf ;

E
[
φ2
f

(
H(e

(n)
i (θ))

)(
F−1

(
H(e

(n)
i (θ))

))2]
=

∫ 1

0

φ2
f (u)

(
F−1(u)

)2
du

=

∫ ∞

−∞
ϕ2f (e)e

2f(e)de
def
= Qf .
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Moreover, under P
(n)
h;θ , the signs s

(n)
i (θ) (i = 1, . . . , n) are i.i.d. U {−1, 1}. In addition,

n∑
i=1

(
G

(n)
i� (λ)−G

(n)
� (λ)

)
= 0,

n∑
i=1

(
G

(n)
ii (λ)−

tr
(
G(n)(λ)

)
n

)
= 0,

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)

=

n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ij (λ)− n(n− 1)

g(n)(λ)

n(n− 1)

=
n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ij (λ)−

(
n2G

(n)
�� (λ)− tr

(
G(n)(λ)

))

=
n∑
i=1

n∑
j=1

G
(n)
ij (λ)−

n∑
i=1

G
(n)
ii (λ)− n2G

(n)
�� (λ) + tr

(
G(n)(λ)

)
= n2G

(n)
�� (λ)− tr

(
G(n)(λ)

)
− n2G

(n)
�� (λ) + tr

(
G(n)(λ)

)
= 0.

It follows that, under P
(n)
h;θ ,

E
[
∆

(n)∗
f,h (θ)

]
= 0.

Using the decompositions (29) and (30), similar calculations than those summarized in

Appendix A.1 provide the expressions of E
[
∆

(n)∗
f,h;β(θ)

(
∆

(n)∗
f,h;β(θ)

)T]
, E

[(
∆

(n)∗
f,h;λ(θ)

)2]
and E

[
∆

(n)∗
f,h;β(θ)∆

(n)∗
f,h;λ(θ)

]
, under P

(n)
h;θ , and, at the same time, the expression of matrix

I∗f (θ).
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