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Abstract

This paper introduces a new one-step parametric estimation method for spatial
autoregressive (SAR) models, providing an efficient estimator for any error distribution
with a defined quantile function. Based on Le Cam’s Local Asymptotic Normality
(LAN) theory, it extends the maximum likelihood approach to cases like the Laplace
distribution, which lacks a globally defined first derivative.

We further develop this estimator for two highly flexible distributions: Tukey’s g-
and-h and Pewsey and Jones’s sinh-arcsinh (SAS), designed to capture skewness and
non-normal tail weight. These flexible distributions mitigate the risks of distributional
misspecification by approximating a wide range of parametric distributions.

Monte Carlo simulations assess finite-sample performance, showing that our esti-
mator outperforms traditional parametric spatial methods when the error distribution
deviates from normality and is well-approximated by these flexible alternatives.

1 Introduction

The linear model with endogenous interaction effects, often referred to as autoregressive
model in spatial econometrics literature, cannot generally be estimated by Ordinary Least
Squares (OLS) due to the simultaneity arising from these effects. As such, Two-Stage Least

∗This research was initiated when Vincenzo Verardi was Associated Researcher of the FNRS (Fonds
National de la Recherche Scientifique) at the University of Namur and he gratefully acknowledges their
financial support.
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Squares (TSLS) (Kelejian & Prucha 1998, 1999, Bramoullé et al. 2009), Generalized Method
of Moments (GMM) (Lee 2007, Kelejian & Prucha 2010) and Maximum Likelihood (ML)
(Ord 1975) approaches have been derived to obtain consistent estimators. However, all of
these estimators are not equally efficient.

When the distribution of the error term is known, the maximum likelihood estimator
(MLE) provides the most efficient estimator, as its asymptotic variance attains the Cramer-
Rao lower bound. In case the distribution is unknown Quasi-MLE (QLME) for the SAR
model under normality of the error term can be considered and Lee (2004) studied its
asymptotic properties. An important benefit of the normal distribution is that it belongs
to the linear exponential family of distributions (see Gourieroux et al. 1984). As such, even
if the true error distribution is not normal, the QMLE will remains consistent provided that
the conditional expectation of the outcome is well specified. However, this estimator will
no longer be efficient. Hence, alternative approaches, which do not impose distributional
assumptions on the error term, have been proposed. Lee (2003) develops the best TSLS
estimator, but which has been shown to be less efficient than the MLE under the true
distribution; Liu et al. (2010) derive a GMM estimator that incorporates both linear and
quadratic moment conditions and demonstrate that, although their estimator is less efficient
than the MLE under the true distribution, it outperforms the normality-based QMLE as
soon as the underlying distribution deviates from normality. In a different asymptotic
setting, similar to the one Lee (2002) used to show the consistency of OLS estimators for
the SAR specification, Robinson (2010) proposes an adaptive estimator (ADPE) based on
series approximations of the score function. This estimator achieves the same efficiency as
the MLE under the true distribution. However, it requires selecting a basis function for the
series, which Robinson (2010) restricts to two options, along with determining its power.
Finally, Debarsy et al. (2024) develop a semiparametrically efficient estimator (R&S) (i.e.
that attains the semiparametric Cramer-Rao bound) that relies on the rank and signs of
the residuals of a preliminary consistent estimator.

Relaxing assumptions about the error distribution can eliminate one source of misspec-
ification. However, adopting a parametric distribution offers several advantages, such as
improved efficiency and interpretability. When the assumed distribution is correct, para-
metric methods yield more efficient estimators than nonparametric ones. Additionally,
researchers may be interested in specific features of the distribution, such as its symme-
try or tail behavior. For example, assessing the asymmetry in the payoffs distribution of
a lottery can be crucial for testing differences between loss aversion and acquiring gains.
Furthermore, in structural econometrics, the distribution of the error term is often specified.

The classical approach in this setup is to write the (log-)likelihood function derived
from the parametric distribution and estimate simultaneously regression coefficients and
distributional parameters. However, this approach is not free of problems. Some distri-
butions, such as the Laplace distribution, are not differentiable everywhere, compromising
the regularity assumptions of the MLE. In other cases, the density function may not be
explicitly defined, making MLE infeasible. Even when all conditions are satisfied, numerical
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convergence can sometimes be difficult and cumbersome.
In this paper, we first develop a general estimation strategy which easily provides effi-

cient estimators for any parametric distribution with an explicitly defined quantile function.
Secondly, we also propose to approximate the error distribution by relying on two highly
flexible distributions, namely the Tukey g-and-h distribution (Tukey 1977) and the Sinh-
Arcsinh distribution (introduced by Jones & Pewsey 2009).

Our methodology is based on one-step estimators derived from the Local Asymptotic
Normality (LAN) theory, as developed in the statistical literature. (see Le Cam 1960). The
LAN framework is much less demanding in terms of distributional assumptions, allowing it
to be viewed as an extension of the Maximum Likelihood approach in the regression setting.
Additionally, we choose to express everything in terms of the quantile function, allowing our
results to be applicable even in cases where the density function is not explicitly defined.

The structure of this paper is as follows. Following this introduction, we present the
Local Asymptotic Normality (LAN) property and the resulting one-step estimator in Section
2. In Section 3, we present a spillover effects model, commonly referred to as the spatial
autoregressive model, though the term is somewhat overused, as it has broader applications
beyond spatial econometrics. In Section 4, we explain how this model can be estimated
by relying on the quantile function and the LAN property. Subsequently, in Section 5, we
explore specific cases, such as the Laplace distribution (leading to a spatial L1 estimator),
the Tukey g-and-h distribution, and Jones and Pewsey’s Sinh-Arcsinh (SAS) distribution.
We also explain how a preliminary estimator of the density function can be obtained using
quantile least squares. Section 6 focuses on a discussion of flexible distributions. In Section
7, we compare the performance of the proposed estimators against alternative methods
while Section 8 concludes.

2 LAN property

Local Asymptotic Normality, first introduced by Le Cam (1960), provides information on
the performance of estimators and test procedures when sample sizes go to infinity.

Following Hallin (1996) (from page 129 onwards), let y(n) =
(
y
(n)
1 , . . . , y

(n)
n

)T
, n ∈ N0,

be a sequence of observations described by the sequence of statistical models E(n) =(
Rn,B(Rn),P(n)

)
, where P(n) =

{
P
(n)
θ : θ ∈ Θ

}
is a parametric family of probability dis-

tributions defined on (Rn,B(Rn)) and indexed by parameter θ ∈ Θ (with Θ an open set
of RL); observation y(n) is a random vector, of distribution P

(n)
θ . Consider the sequences

of probability distributions P
(n)
θ and P

(n)

θ+ν(n)τ (n) , where ν(n) is a (L× L) non singular

matrix such that ∥ν(n)∥ → 0 for n → ∞, and τ (n) is a (L× 1) real vector such that
supn(τ

(n))Tτ (n) < ∞; denote by Λ
(n)

θ+ν(n)τ (n)/θ
the logarithm of the likelihood ratio. Hallin

(1996) (definition 4.1, page 131) formulates the LAN property of E(n) as follows:
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Definition. The sequence of parametric statistical models E(n) =
(
Rn,B(Rn),P(n)

)
is said

to be locally asymptotically normal (LAN) if, for all θ ∈ Θ, there exists a sequence ∆(n)(θ)
of L-dimensional and (y(n),θ)-measurable random vectors, and a (L×L) symetric positive
semi-definite matrix I(θ), such that, under P

(n)
θ , as n → ∞:

(i) for every sequence τ (n) such that supn(τ
(n))Tτ (n) < ∞,

Λ
(n)

θ+ν(n)τ (n)/θ
= (τ (n))T∆(n)(θ)− 1

2
(τ (n))TI(θ)τ (n) + oP(1) ;

(ii) ∆(n)(θ)
L−→ N (0, I(θ)) .

Vector ∆(n)(θ) is called the central sequence. It is only defined up to oP(1) (under P(n)
θ , as

n → ∞).
A sequence of statistical models with the LAN property is therefore a sequence of models

whose log-likelihoods Λ
(n)
θ+ν(n)τ/θ can be approximated (on a pointwise basis, at each value

of θ) by the log-likelihoods of a Gaussian position model of the form
(
RL,B(RL),Pθ

)
, where

Pθ =
{
N(I(θ)τ , I(θ)) : τ ∈ RL

}
. Hence, statistical procedures (tests, estimators) enjoying

"good" properties in the limit local Gaussian model also enjoy, asymptotically, these "good"
properties in the original sequence of statistical models E(n).

Le Cam (1970) showed that the conventional regularity conditions needed for maximum
likelihood theory are excessively stringent.1 He showed they could be replaced by a sim-
pler assumption called Quadratic Mean Differentiability (QMD) which only requires single
differentiability almost everywhere. In simple terms, QMD ensures that the log-likelihood
behaves smoothly enough so that it is possible to rely on local quadratic approximations
of the likelihood to estimate the parameters. In addition, as long as differentiability holds
at most points in a neighborhood around the true value, the lack of smoothness or dif-
ferentiability at a small number of isolated points does not significantly affect the overall
behavior of the likelihood. QMD allows to consider distributions of the error term that
would have been ruled out in the classical maximum likelihood framework, such as the
Laplace distribution.

If the LAN property of the sequence of statistical models E(n) holds, then for a
√
n-

consistent preliminary estimator θ̃
(n)

of θ, the one-step estimator θ̂
(n)

, defined as

θ̂
(n)

= θ̃
(n)

+
1√
n

(
I
(
θ̃
(n)
))−1

∆(n)
(
θ̃
(n)
)
, (1)

1Explaining the technical aspects of LAN, which involves elements from measure and information theory,
goes well beyond the scope of this paper. For a thorough revision of LAN theory, we recommend the works
of Van der Vaart (1998) and Le Cam & Yang (2000).
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is an asymptotically efficient estimator of θ. In other words, θ̂
(n)

is asymptotically equiva-
lent to the maximum likelihood (ML) estimator of θ: under P

(n)
θ , as n → ∞,

√
n
(
θ̂
(n)

− θ
)

L→ N
(
0, (I(θ))−1

)
.

Therefore, an asymptotically efficient one-step estimator can be obtained without having
to solve the optimization problem associated with the ML estimation of parameter θ. This
result is particularly advantageous when the calculation of the MLE is computationally or
analytically complex.

3 The model

3.1 Definition of the model

In this paper, we consider the following linear model with endogenous effects.2 For i =
1, . . . , n,

y
(n)
i = (x

(n)
i )Tβ + λ

n∑
j=1
j ̸=i

w
(n)
ij y

(n)
j + ε

(n)
i , (2)

where n is the sample size, y
(n)
1 , . . . , y

(n)
n are the observations of the dependent variable,

x
(n)
i =

(
x
(n)
i1 , . . . , x

(n)
iK

)T
is the vector of covariates for individual i, and β = (β1, . . . , βK)T ∈

RK is the associated vector of regression parameters. The term
∑n

j ̸=iw
(n)
ij y

(n)
j represents

endogenous (interaction) effects and consists of a weighted sum of the outcomes for other
individuals that affect i. The definition of the relevant weighting scheme is modeled by
the elements w

(n)
ij of the general connectivity matrix W(n), which depends on the question

under study. For instance, in the social-network literature, the peers (people that affect
individual i’s behavior) may be friends, geographic neighbors, roommates or coworkers to
mention a few. The parameter λ measures the intensity of these endogenous effects. Fi-
nally, ε(n)1 , . . . , ε

(n)
n are i.i.d. error terms with (marginal) absolutely continuous distribution

characterized by a density function belonging to a family F , defined as

F =
{
fγ : γ ∈ Γ ⊆ RR

}
,

where γ = (γ1, . . . , γR)
T is a vector of parameters of location, scale, and shape (typically

skewness and tail heaviness).3

2Contextual effects may be further integrated without any difficulties.
3Model (2) does not explicitly include a regression constant. Instead, it is the location parameter of the

underlying distribution of the error term that plays the role of the regression constant; the latter is not,
strictly speaking, a parameter of interest in the regression model under consideration.
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To illustrate the performance of our one-step estimator, we consider three different error
density functions. To start with, we assume that the disturbances follow a Laplace distri-
bution, which is not differentiable everywhere and hence does not fall under the regularity
conditions of the ML approach. We then study the case of error terms being distributed
according to two flexible distributions: a Tukey g-and-h distribution and a sinh-arcsinh
(SAS) distribution. The former lacks an explicit density function, which poses challenges
when considered in a maximum likelihood setup (see MacGillivray 1992, and Xu & Genton
2015 for numerical solutions) while the latter may pose numerical convergence problems.

Equation (2) actually defines a sequence of parametric models E(n) =
(
Rn,B(Rn),P(n)

)
,

where

P(n) =
{
P
(n)
θ : θ =

(
βT, λ,γT

)T ∈ Θ ⊂ RK × Λ× RR
}
.

and the parameter space Λ is a compact subset of R defined in Section 3.3.

3.2 Some notations

Let us introduce some notations that will be used throughout the subsequent text. For a
square (n× n)-matrix A(n):

• A
(n)
i� represents the ith row of A(n);

• A
(n)
� =

1

n

n∑
i=1

A
(n)
i� is the average (1× n)-vector of the n rows of A(n);

• A
(n)
�� =

1

n2

n∑
i=1

n∑
j=1

A
(n)
ij is the average of the n2 components of matrix A(n);

• tr
(
A(n)

)
is the trace of A(n).

By writing the model (2) for the entire sample, we find its reduced form:

y(n) =
(
In − λW(n)

)−1 (
X(n)β + ε(n)

)
,

where y(n) =
(
y
(n)
1 , . . . , y

(n)
n

)T
, In is the (n×n)-identity matrix, X(n) =

(
x
(n)
1 , . . . ,x

(n)
n

)T
,

and ε(n) =
(
ε
(n)
1 , . . . , ε

(n)
n

)T
. Further, we have

W(n)y(n) = G(n)(λ)
(
X(n)β + ε(n)

)
, (3)

with G(n)(λ) = W(n)
(
In − λW(n)

)−1.
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3.3 Regularity conditions

Lee (2004) lists and discusses the regularity conditions imposed on the interaction weights
w

(n)
ij , on the regression parameter λ (see Assumption 1 below), and on the covariate vectors

x
(n)
i (Assumption 2), required for the ML estimation of the regression parameters β and

λ. As Lee (2004) focuses on the quasi-maximum likelihood estimator under normality, he
further imposes the distribution of the error term to be Gaussian. In this paper, we relax
this assumption using Assumption 3, where we simply say that the density function should
be positive, parametrically defined, and differentiable in quadratic mean.

Assumption 1.

(i) The elements w
(n)
ij of the matrix W(n) are at most of order 1/h(n) — they are

O(1/h(n)) — uniformly in all i, j, where the rate sequence {h(n)} is such that the
ratio h(n)/n → 0 as n → ∞.4 As a normalization, w(n)

ii = 0 for all i.

(ii) Let In be the (n×n)-identity matrix. In model (2), the matrix In−λW(n) is nonsingu-
lar. Moreover, the sequences

{
W(n)

}
and

{(
In − λW(n)

)−1
}

are uniformly bounded
in both row and column sums (Horn & Johnson 1985).

(iii) In the sequence
{(

In − ℓW(n)
)−1
}
, matrices

(
In − ℓW(n)

)−1 are bounded in either
row or column sums, uniformly in ℓ in an open set parameter space Λ. In consequence,
the true value of parameter λ in model (2) is assumed to belong to the interior of Λ.

The parameter space Λ depends on the specification of W(n). When its eigenvalues
are real, Λ may be defined as the open subset

(
1/ω

(n)
max, 1/ω

(n)
min

)
, where ω

(n)
min and ω

(n)
max are

respectively the minimal and maximal eigenvalues of W(n). However, to ensure comparable
values of λ for different connectivity matrices, W(n) is most of the time normalized. Kelejian
& Prucha (2010) mention the spectral radius and the minimum between the absolute row
and column sum norms as normalizations, which restrict Λ to be the open subset (−1, 1).5

Assumption 2. The elements of x(n)
i are uniformly bounded constants for all i and all n.

Besides, the limn→∞
∑n

i=1 x
(n)
i (x

(n)
i )T/n exists and is non-singular.

The LAN property of the sequence of the parametric SAR models E(n) considered in
this paper holds under the following regularity conditions for the marginal density fγ of the
i.i.d. error terms ε

(n)
1 , . . . , ε

(n)
n (see for instance, Hallin 1996, for the first two conditions):

4That is, for some real constant c, there exists a finite integer N such that, for all n ≥ N , |h(n)w
(n)
ij | < c

for all i, j (see, e.g. White 1984, p.14).
5Another normalization, namely the row-normalization, is widely used in applied work. However, unless

it is theoretically grounded (see, for instance, Patacchini & Zenou 2012), or for special cases, such as
assigning the same number of neighbors to each observation, this normalization should not be used as it
introduces misspecification in the model (see Neumayer & Plümper 2016).
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Assumption 3.

(i) fγ(e) > 0 for e ∈ R;

(ii) fγ is absolutely continuous with (almost everywhere) derivative f ′
γ and finite Fisher

information for location Ifγ =
∫∞
−∞ ϕ2

fγ
(e)fγ(e)de, where ϕfγ (e) = −f ′

γ(e)

fγ(e)
.

(iii)
∫∞
−∞ |e|4+ν fγ(e)de < ∞ for some ν > 0.

4 Efficient one-step estimator of θ =
(
βT, λ,γT

)T
4.1 Efficient estimation of θ: general principles

Let e
(n)
i (β, λ) (i = 1, . . . , n) be the regression residuals associated with the values β and λ

of the regression coefficients:

e
(n)
i (β, λ) = y

(n)
i − (x

(n)
i )Tβ − λW

(n)
i� y(n). (4)

Then, the log-likelihood function associated to the parametric SAR model E(n) is

lnL
(
θ
∣∣∣y(n),W(n),X(n)

)
= ln

∣∣∣det(In − λW(n)
)∣∣∣+ n∑

i=1

ln fγ

(
e
(n)
i (β, λ)

)
. (5)

Note that we may also characterize the distribution of the error term by its distribution
function Fγ or, equivalently, its quantile function

Qγ : (0, 1) → R : u 7→ Qγ(u) = F−1
γ (u).

Consequently, since

fγ(e) =
dFγ(e)

de
=

d

de

{
Q−1

γ (e)
}
=

1

Q′
γ

(
Q−1

γ (e)
)

with Q′
γ(u) =

dQγ(u)
du , the log-likelihood function for E(n) may be written as follows:

lnL
(
θ
∣∣∣y(n),W(n),X(n)

)
= ln

∣∣∣det(In − λW(n)
)∣∣∣− n∑

i=1

lnQ′
γ

(
Q−1

γ

(
e
(n)
i (β, λ)

))
.(6)

Note also that, under P (n)
θ , the random variables u(n)i (θ)

def
= Q−1

γ

(
e
(n)
i (β, λ)

)
, i = 1, . . . , n,

are i.i.d. U(0, 1).
If fγ is the density function of a centered Laplace distribution, the assumptions needed

for the ML estimation are not satisfied as fγ is not differentiable at zero. If fγ is the density
function of a SAS distribution (see Jones & Pewsey 2009), the optimization program for
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the MLE could pose technical difficulties given the complicated interdependence of the
parameters determining the shape of the pdf. If on the other hand we consider that the
error term distribution is a Tukey g-and-h, the ML estimation of θ =

(
βT, λ,γT

)T is even
more difficult. Since the density function of the Tukey g-and-h distribution has no explicit
form, the optimization program for the MLE needs a numeric inversion of the quantile
function, which is a computationally demanding task (see Rayner & MacGillivray (2002)
or Xu & Genton (2015) for a simpler numerical solution). These three examples show why
we may benefit from avoiding the obstacles related to fitting the ML estimator of θ. As a
solution, we propose to rely on the LAN property of the sequence E(n) of SAR models and
to estimate θ using a one-step estimator of the form (1).

4.2 General expressions for ∆(n)(θ) and I(θ)

The central sequence is, up to oP(1), given by

∆(n)(θ) =

 ∆
(n)
β (θ)

∆
(n)
λ (θ)

∆
(n)
γ (θ)

 =


1√
n

∂
∂β

{
lnL

(
θ
∣∣y(n),W(n),X(n)

)}
1√
n

∂
∂λ

{
lnL

(
θ
∣∣y(n),W(n),X(n)

)}
1√
n

∂
∂γ

{
lnL

(
θ
∣∣y(n),W(n),X(n)

)}
 .

Considering the log-likelihood function shown in (5) and the regression residuals pre-
sented in (4), we have, as in Debarsy et al. (2024), that:

∆
(n)
β (θ) =

1√
n

n∑
i=1

f ′
γ

(
e
(n)
i (β, λ)

)
fγ

(
e
(n)
i (β, λ)

) ∂

∂β

{
e
(n)
i (β, λ)

}

=
1√
n

n∑
i=1

ϕfγ

(
e
(n)
i (β, λ)

)
x
(n)
i , (7)

∆λ(θ) =
1√
n

∂

∂λ

{
ln
∣∣∣det(In − λW(n)

)∣∣∣}+
1√
n

n∑
i=1

∂

∂λ

{
ln fγ

(
e
(n)
i (β, λ)

)}
= − 1√

n
tr
(
G(n)(λ)

)
+

1√
n

n∑
i=1

ϕfγ

(
e
(n)
i (β, λ)

)
W

(n)
i� y(n), (8)

and

∆
(n)
γ (θ) =

(
∆(n)

γ1 (θ), . . . ,∆(n)
γR

(θ)
)T

,

where, for r = 1, . . . , R,

∆(n)
γr (θ) =

1√
n

n∑
i=1

1

fγ

(
e
(n)
i (β, λ)

) ∂

∂γr

{
fγ

(
e
(n)
i (β, λ)

)}
. (9)
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Remember that fγ(e) =
1

Q′
γ(Q

−1
γ (e))

, such that f ′
γ(e) = − Q′′

γ(Q
−1
γ (e))

[Q′
γ(Q

−1
γ (e))]

3 and

ϕfγ (e) = −
f ′
γ(e)

fγ(e)
=

Q′′
γ

(
Q−1

γ (e)
)[

Q′
γ

(
Q−1

γ (e)
)]2 def

= Q̃γ

(
Q−1

γ (e)
)
, e ∈ R.

Consequently, if we rather consider expression (6) of the log-likelihood function and denote,
as previously, u(n)i (θ) = Q−1

γ

(
e
(n)
i (β, λ)

)
= Fγ

(
e
(n)
i (β, λ)

)
, we get:

∆
(n)
β (θ) =

1√
n

n∑
i=1

Q̃γ

(
u
(n)
i (θ)

)
x
(n)
i , (10)

∆
(n)
λ (θ) = − 1√

n
tr
(
G(n)(λ)

)
+

1√
n

n∑
i=1

Q̃γ

(
u
(n)
i (θ)

)
W

(n)
i� y(n), (11)

and

∆
(n)
γ (θ) =

(
∆(n)

γ1 (θ), . . . ,∆(n)
γR

(θ)
)T

,

where, for r = 1, . . . , R,

∆(n)
γr (θ) = − 1√

n

n∑
i=1

∂

∂γr

{
lnQ′

γ

(
Q−1

γ

(
e
(n)
i (β, λ)

))}

= − 1√
n

n∑
i=1

 1

Q′
γ

(
u
(n)
i (θ)

) ∂

∂γr

{
Q′

γ

(
Q−1

γ

(
e
(n)
i (β, λ)

))}
= − 1√

n

n∑
i=1

1

Q′
γ

(
u
(n)
i (θ)

)
×

 ∂

∂γr

{
Q′

γ

(
u
(n)
i (θ)

)}
−

Q′′
γ

(
u
(n)
i (θ)

)
Q′

γ

(
u
(n)
i (θ)

) ∂

∂γr

{
Qγ

(
u
(n)
i (θ)

)}
(see Rayner & MacGillivray 2002, p.63). Defining

Hγ;r(u) =
(−1)

Q′
γ (u)

[
∂Q′

γ (u)

∂γr
−

Q′′
γ (u)

Q′
γ (u)

∂Qγ (u)

∂γr

]
= Q̃γ (u)

∂Qγ (u)

∂γr
− 1

Q′
γ (u)

∂Q′
γ (u)

∂γr
, u ∈ (0, 1),

10



we have, for r = 1, . . . , R,

∆(n)
γr (θ) =

1√
n

n∑
i=1

Hγ;r

(
u
(n)
i (θ)

)
. (12)

The information matrix

I(θ) =

 Iβ(θ) Iβ,λ(θ) Iβ,γ(θ)

(Iβ,λ(θ))
T Iλ(θ) Iλ,γ(θ)

(Iβ,γ(θ))
T (Iλ,γ(θ))

T Iγ(θ)


can be obtained as

lim
n→∞

E
[
∆(n)(θ)

(
∆(n)(θ)

)T]
, (13)

the expectation being determined under P
(n)
θ , i.e. assuming that the regression residuals

e
(n)
i (β, λ) (i = 1, . . . , n) are i.i.d. with marginal density function fγ and quantile function
Qγ .

Let us define:

µγ =

∫ 1

0
Qγ(u)du, νγ =

∫ 1

0
Q2

γ(u)du, Iγ =

∫ 1

0
Q̃2

γ(u)du,

Kγ =

∫ 1

0
Q̃2

γ(u)Qγ(u)du, Lγ =

∫ 1

0
Q̃2

γ(u)Q
2
γ(u)du,

and, for r, s ∈ {1, . . . , R}, r ̸= s:

Hγ;r =

∫ 1

0
Q̃γ(u)Hγ;r(u)du, Mγ;r =

∫ 1

0
Q̃γ(u)Qγ(u)Hγ;r(u)du,

Jγ;r =

∫ 1

0
H2

γ;r(u)du, Jγ;r,s =

∫ 1

0
Hγ;r(u)Hγ;s(u)du.

11



We have6 (r, s ∈ {1, . . . , R}, r ̸= s):

E
[
∆

(n)
β (θ)

(
∆

(n)
β (θ)

)T]
= Iγ

{
1

n

n∑
i=1

x
(n)
i (x

(n)
i )T

}
, (14)

E
[
∆

(n)
β (θ)∆

(n)
λ (θ)

]
= Iγ

{
1

n

n∑
i=1

x
(n)
i

(
G

(n)
i� (λ)X(n)β

)}
+Kγ

{
1

n

n∑
i=1

x
(n)
i G

(n)
ii (λ)

}

+ Iγµγ


1

n

n∑
i=1

n∑
j=1
j ̸=i

x
(n)
i G

(n)
ij (λ)

 , (15)

E
[
∆

(n)
β (θ)∆(n)

γr (θ)
]
= Hγ;r

{
1

n

n∑
i=1

x
(n)
i

}
, (16)

E
[(

∆
(n)
λ (θ)

)2]
= Iγ

{
1

n

n∑
i=1

(
G

(n)
i� (λ)X(n)β

)2}
+ (Lγ − 1)

{
1

n

n∑
i=1

(
G

(n)
ii (λ)

)2}

+ Iγνγ


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
ij (λ)

)2+


1

n

n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ij (λ)G

(n)
ji (λ)


+ Iγµ2

γ


1

n

n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i,j

G
(n)
ij (λ)G

(n)
ik (λ)


+Kγµγ


1

n

n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ii (λ)G

(n)
ij (λ)


+Kγ

{
1

n

n∑
i=1

(
G

(n)
i� (λ)X(n)β

)
G

(n)
ii (λ)

}

+ Iγµγ


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
i� (λ)X(n)β

)
G

(n)
ij (λ)

 , (17)

6Appendix A contains some details on the derivation of the different expectations.
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E
[
∆

(n)
λ (θ)∆(n)

γr (θ)
]
= Hγ;r

{
1

n

n∑
i=1

G
(n)
i� (λ)X(n)β

}

+Mγ;r
tr
(
G(n)(λ)

)
n

+Hγ;rµγ

{
nG

(n)
�� (λ)−

tr
(
G(n)(λ)

)
n

}
, (18)

E
[(

∆(n)
γr (θ)

)2]
= Jγ;r, (19)

E
[
∆(n)

γr (θ)∆(n)
γs (θ)

]
= Jγ;r,s. (20)

Remark 1. All the results obtained in this paper can be readily applied to the classical linear
model (i.e., one without endogenous effects). To do so, one requires to impose λ = 0 in the
regression residuals (see 4) and in the log-likelihood function (see 5) and also simplify the
central sequence vector and the information matrix by removing all terms involving λ. As
such, the vector of parameters to estimate becomes θ =

(
βT,γT

)T. Finally, the consistent
preliminary estimator required for the estimation (as explained later) could be a standard
ordinary least squares fit.

5 Estimation of models assuming a parametric distribution
of the errors

The formulas provided in the previous section can be used to fit estimators that are asymp-
totically equivalent to the MLE. However, the density function of the error is only required
to be differentiable in quadratic mean and not to be twice or three times differentiable ev-
erywhere, as it is usually the case for maximum likelihood. Moreover, since all the formulas
have been derived using the quantile function, there is no necessity to explicitly define the
density function. In the three sections below, we give the explicit formulas for ∆(n)(θ) and
I(θ) in the case of three specific distributions of the error term: (i) the Laplace distribution
that is well known not to be differentiable everywhere (but satisfying the QMD condition),
(ii) the flexible Tukey g-and-h distribution that approximates well a vast variety of distri-
butions but that does not have an explicitly defined density, and (iii) the SAS distribution,
which can also approximate many parametric distributions, but despite being character-
ized by a well-defined density function, might be associated with computational difficulties
when using standard ML algorithm, due to complicated interdependence of the parameters
determining the shape of the density.

5.1 For a Laplace distributed error term

Let us assume that, in model (2), the error terms ε
(n)
1 , . . . , ε

(n)
n are i.i.d. with Laplace(µ, b)

marginal distribution (i.e., the Laplace distribution with mean equal to µ and scale param-
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eter b > 0). In this particular case, R = 2 and γ = (µ, b)T. When E is Laplace(µ, b)-
distributed, its density function is equal to

fγ(e) =
1

2b
exp

(
−|e− µ|

b

)
=

{
1
2b exp

( e−µ
b

)
if e ≤ µ

1
2b exp

(
− e−µ

b

)
if e > µ.

Its distribution function is given by

Fγ(e) =

{
1
2 exp

( e−µ
b

)
if e ≤ µ

1− 1
2 exp

(
− e−µ

b

)
if e > µ,

such that the quantile function that characterizes the Laplace(µ, b)-distribution is

Qγ(u) =

{
µ+ b ln(2u) if u ∈ (0, 1/2]

µ− b ln(2(1− u)) if u ∈ (1/2, 1).

It follows that

Q′
γ(u) =

{
b
u if u ∈ (0, 1/2]
b

1−u if u ∈ (1/2, 1)
and Q′′

γ(u) =

{
− b

u2 if u ∈ (0, 1/2]
b

(1−u)2
if u ∈ (1/2, 1).

Moreover,

∂Qγ(u)

∂µ
= 1,

∂Q′
γ(u)

∂µ
= 0,

∂Qγ(u)

∂b
=

{
ln(2u) if u ∈ (0, 1/2]

− ln(2(1− u)) if u ∈ (1/2, 1)
and

∂Q′
γ(u)

∂b
=

{
1
u if u ∈ (0, 1/2]
1

1−u if u ∈ (1/2, 1).

Consequently,

Q̃γ(u) =
Q′′

γ(u)[
Q′

γ(u)
]2 =

{
−1

b if u ∈ (0, 1/2]
1
b if u ∈ (1/2, 1),

such that

Hγ;1(u) = Q̃γ(u)
∂Qγ(u)

∂µ
− 1

Q′
γ(u)

∂Q′
γ(u)

∂µ
= Q̃γ(u)

and

Hγ;2(u) = Q̃γ(u)
∂Qγ(u)

∂b
− 1

Q′
γ(u)

∂Q′
γ(u)

∂b

=

{
−1

b [1 + ln(2u)] if u ∈ (0, 1/2]

−1
b [1 + ln(2(1− u))] if u ∈ (1/2, 1).

To obtain the spatial L1 estimator, we only have to plug the formulas here above in
expressions for the central sequence (10 to 12) and the Information matrix (14 to 20), and
then compute the efficient one-step estimator shown in (1).
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5.2 For a Tukey g-and-h distributed error term

Tukey (1977) develop a flexible family of distributions known as Tukey g-and-h distribu-
tions. These distributions are derived from transformations of the standard normal dis-
tribution and are designed to model random variables characterized by heavy tails and/or
skewness.

5.2.1 Definition

Let Z be a random variable with standard normal distribution N(0, 1).7 Define the random
variable E through the transformation

E = ξ + στg,h(Z),

where ξ ∈ R, σ ∈ R+
0 , and

τg,h(z) =
1

g
(exp(gz)− 1) exp(hz2/2),

with g ∈ R (for g = 0, we have τ0,h(z) = limg→0 τg,h(z) = z exp(hz2/2)) and h ≥ 0.8

Variable E is said to have a Tukey g-and-h distribution with location parameter (median)
ξ and scale parameter σ: E ∼ Tg,h(ξ, σ). Parameter g controls the skewness (g = 0
corresponds to a symmetric distribution; g > 0 yields a right-skewed distribution and
g < 0 gives a left-skewed distribution), while h controls the tail heaviness (also called
elongation) of the distribution (h > 0 leads to heavy-tailed distributions). When g = h = 0,
the Tg,h(ξ, σ)-distribution reduces to the normal distribution with mean ξ and standard
deviation σ. Finally, to guarantee the existence of 4th order moment, Martinez & Iglewicz
(1984) have shown that the elongation parameter h should be smaller than 0.25.

The Tg,h(ξ, σ) distribution is very flexible and approximates well many commonly used
unimodal distributions (see Martinez & Iglewicz 1984, MacGillivray 1992, Jiménez Moscoso
& Arunachalam 2011).

5.2.2 Density and quantile functions of the Tg,h(ξ, σ)-distribution

Let γ = (ξ, σ, g, h)T. If E is Tg,h(ξ, σ)-distributed, its density is written as

fγ(e) =
ϕ
(
τ−1
g,h

(
e−ξ
σ

))
στ ′g,h

(
τ−1
g,h

(
e−ξ
σ

)) , e ∈ R,

7Jones (2015, p.179) provides a general formula which extends the Normal assumption of the variable
to be transformed.

8As explained by Xu & Genton (2015), the restriction of non-negative h ensures that the function τg,h(·)
is strictly monotone, regardless of the value of g.
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where ϕ(·) is the standard normal density function, τ−1
g,h(·) is the inverse function of τg,h(·),

and τ ′g,h(z) =
dτg,h(z)

dz . As no explicit form for τ−1
g,h(·) exists, it is not possible to explicitly

write the density function fγ(·). As such, it is more convenient to work with the quantile
function Qγ(·) that characterizes the Tg,h(ξ, σ)-distribution:

Qγ : (0, 1) → R : u 7→ Qγ(u),

where Qγ(u) is the quantile of order u of the Tg,h(ξ, σ)-distribution. Denoting by Φ(·) the
distribution function of the N(0, 1)-distribution and by zu = Φ−1(u) the N(0, 1)-quantile
of order u, we have:

Qγ(u) = ξ + στg,h(zu), u ∈ (0, 1).

This quantile function, as the function τg,h(·), is strictly monotone and smooth, for all
values of ξ, σ, g, and h.

5.2.3 Expressions for ∆(n)(θ) and I(θ)

To calculate the central sequence (10 to 12) and the Information matrix (14 to 20) elements,
one needs to compute the expressions below, which are all explicit.
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Qγ(u) = ξ + στg,h(zu) = ξ + στg,h
(
Φ−1(u)

)
, (21)

Q′
γ(u) =

σ

ϕ(zu)

[
exp

(
hz2u
2

+ gzu

)
+ hzuτg,h(zu)

]
,

Q′′
γ(u) =

σ

ϕ2(zu)

[
(2hzu + zu + g) exp

(
hz2u
2

+ gzu

)
+ h

(
1 + z2u + hz2u

)
τg,h(zu)

]
,

∂Qγ(u)

∂γ1
=

∂Qγ(u)

∂ξ
= 1,

∂Q′
γ(u)

∂γ1
=

∂Q′
γ(u)

∂ξ
= 0,

∂Qγ(u)

∂γ2
=

∂Qγ(u)

∂σ
= τg,h(zu),

∂Q′
γ(u)

∂γ2
=

∂Q′
γ(u)

∂σ
=

1

σ
Q′

γ(u),

∂Qγ(u)

∂γ3
=

∂Qγ(u)

∂g
=

σ

g

[
zu exp

(
hz2u
2

+ gzu

)
− τg,h(zu)

]
,

∂Q′
γ(u)

∂γ3
=

∂Q′
γ(u)

∂g
=

σzu
ϕ(zu)

[(
1 +

hzu
g

)
exp

(
hz2u
2

+ gzu

)
− h

g
τg,h(zu)

]
,

∂Qγ(u)

∂γ4
=

∂Qγ(u)

∂h
=

σ z2u
2

τg,h(zu),

∂Q′
γ(u)

∂γ4
=

∂Q′
γ(u)

∂h
=

σzu
ϕ(zu)

[
zu
2

exp

(
hz2u
2

+ gzu

)
+

(
1 +

hz2u
2

)
τg,h(zu)

]
.

5.3 For a SAS-distributed error term

Another relatively simple four-parameter family of distributions on R has been proposed
by Jones & Pewsey (2009). It is called the SAS (for sinh-arcsinh) distribution. In contrast
to Tukey’s g-and-h distribution, the SAS also permits tails to be lighter than those of the
Normal distribution. We briefly summarize here below the definition and properties of the
SAS and show how the one-step efficient estimator can be computed.

5.3.1 Definition

Let sinh(·) be the sinus hyperbolic function:

sinh(t) =
exp(t)− exp(−t)

2
, t ∈ R,
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and Sϵ,δ(·) be the sinh-arcsinh transformation characterized by the parameters ϵ ∈ R and
δ > 0:

Sϵ,δ(t) = sinh
(
δ sinh−1(t)− ϵ

)
, t ∈ R,

where sinh−1(·) is the inverse function of the sinus hyperbolic function:

sinh−1(t) = ln
(
t+

√
1 + t2

)
, t ∈ R.

Note that, if Sϵ,δ(t) = v, then

t = S−1
ϵ,δ (v) = sinh

(
1

δ
sinh−1(v) +

ϵ

δ

)
= S−ϵ/δ,1/δ(v) ;

hence, the inverse of the sinh-arcsinh transformation with parameters ϵ and δ is the sinh-
arcsinh transformation with parameters −ϵ/δ and 1/δ.

Let Z be a random variable with standard normal distribution N(0, 1). Define the
random variable E through the transformation

E = ξ + σS−1
ϵ,δ (Z),

where ξ ∈ R and σ ∈ R+
0 . Variable E is said to follow a sinh-arcsinh normal distri-

bution with location parameter ξ, scale parameter σ, and shape parameters ϵ and δ:
E ∼ SASϵ,δ(ξ, σ). Parameter ϵ ∈ R controls the skewness (ϵ = 0 corresponds to a symmet-
ric distribution; ϵ > 0 (resp. ϵ < 0) yields a right-skewed (resp. left-skewed) distribution),
while δ > 0 controls the heaviness of the tails (tailweight decreases when δ increases; When
δ < 1, the tails of the distribution are heavier than those of the normal distribution; On the
contrary, when δ > 1, the tails are lighter). The SAS0,1(ξ, σ)-distribution coincides with
the N(ξ, σ2)-distribution.

5.3.2 Density and quantile functions of the SASϵ,δ(ξ, σ)-distribution

Note first that, for t ∈ R,

S′
ϵ,δ(t) =

dSϵ,δ(t)

dt
= Cϵ,δ(t)δ(1 + t2)−1/2,

where

Cϵ,δ(t) = cosh
(
δ sinh−1(t)− ϵ

)
=
(
1 + S2

ϵ,δ(t)
)1/2

,

with

cosh(t) =
exp(t) + exp(−t)

2
.
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Moreover,

C ′
ϵ,δ(t) =

dCϵ,δ(t)

dt
= Sϵ,δ(t)δ(1 + t2)−1/2.

Note also that

d sinh(t)

dt
= cosh(t),

d cosh(t)

dt
= sinh(t),

d

dt

{
sinh−1(t)

}
=

1√
1 + t2

.

Let γ = (ξ, σ, ϵ, δ)T. When E is SASϵ,δ(ξ, σ)-distributed, its density is written as

fγ(e) = ϕ

(
Sϵ,δ

(
e− ξ

σ

))
Cϵ,δ

(
e− ξ

σ

)
δ

σ

(
1 +

(
e− ξ

σ

)2
)−1/2

, e ∈ R,

The associated quantile function Qγ(·) is

Qγ(u) = ξ + σS−1
ϵ,δ (zu)

= ξ + σS−ϵ/δ,1/δ(zu), (22)

where zu = Φ−1(u) is the N(0, 1)-quantile of order u.
Finally note that the position parameter ξ does not coincide with the median of the

SASϵ,δ(ξ, σ)-distribution.

Qγ(1/2) = ξ + σS−ϵ/δ,1/δ(0) = ξ + σ sinh
( ϵ
δ

)
.
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5.3.3 Expressions for ∆(n)(θ) and I(θ)

To calculate the central sequence (10 to 12) and the Information matrix (14 to 20) elements,
one needs to compute the expressions below, which are again all explicit:

Qγ(u) = ξ + σS−ϵ/δ,1/δ(zu) = ξ + σS−ϵ/δ,1/δ

(
Φ−1(u)

)
,

Q′
γ(u) =

σ

δϕ(zu)
√
1 + z2u

C−ϵ/δ,1/δ(zu),

Q′′
γ(u) =

σ

δ2ϕ2(zu) (1 + z2u)

[
S−ϵ/δ,1/δ(zu) + δC−ϵ/δ,1/δ(zu)

z3u√
1 + z2u

]
,

∂Qγ(u)

∂γ1
=

∂Qγ(u)

∂ξ
= 1,

∂Q′
γ(u)

∂γ1
=

∂Q′
γ(u)

∂ξ
= 0,

∂Qγ(u)

∂γ2
=

∂Qγ(u)

∂σ
= S−ϵ/δ,1/δ(zu),

∂Q′
γ(u)

∂γ2
=

∂Q′
γ(u)

∂σ
=

1

σ
Q′

γ(u),

∂Qγ(u)

∂γ3
=

∂Qγ(u)

∂ϵ
=

σ

δ
C−ϵ/δ,1/δ(zu),

∂Q′
γ(u)

∂γ3
=

∂Q′
γ(u)

∂ϵ
=

σ

δ2ϕ(zu)
√

1 + z2u
S−ϵ/δ,1/δ(zu),

∂Qγ(u)

∂γ4
=

∂Qγ(u)

∂δ
=

(−σ)

δ
C−ϵ/δ,1/δ(zu)

(
1

δ
sinh−1(zu) +

ϵ

δ

)
,

∂Q′
γ(u)

∂γ4
=

∂Q′
γ(u)

∂δ
=

(−σ)

δ2ϕ(zu)
√

1 + z2u

[
C−ϵ/δ,1/δ(zu) + S−ϵ/δ,1/δ(zu)

(
1

δ
sinh−1(zu) +

ϵ

δ

)]
.

5.4 Practical computation of the efficient one-step estimator of θ

As explained in Section 2, an efficient one-step estimator of θ =
(
βT, λ,γT

)T is defined by
(1), i.e.,

θ̂
(n)

= θ̃
(n)

+
1√
n

(
I
(
θ̃
(n)
))−1

∆(n)
(
θ̃
(n)
)
, (23)

where θ̃
(n)

is a
√
n-consistent preliminary estimator of θ.
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5.4.1 The preliminary estimator θ̃
(n)

The preliminary estimator θ̃
(n)

of θ contains both regression coefficients and the parameters
of the error distribution. As such, we proceed in two steps to obtain a preliminary value of
all its elements.

Step 1 We estimate regression parameters β and λ using either the TSLS estimator9

(Kelejian & Prucha 1998, Bramoullé et al. 2009, Lee 2003), the GMM estimator (Lee 2007,
Liu et al. 2010), or the QML estimator of Lee (2004). This gives us our preliminary estimates

β̃
(n)

=
(
β̃
(n)
1 , . . . , β̃

(n)
K

)T
of β = (β1, . . . , βK)T, and λ̃(n) of λ.

Step 2 Once we have a preliminary
√
n-consistent point estimate for the regression coef-

ficients, we may compute the residuals as follows

e
(n)
i

(
β̃
(n)

, λ̃(n)
)
= y

(n)
i −

K∑
k=1

β̃
(n)
k x

(n)
ik − λ̃(n)W

(n)
i� y(n), i = 1, . . . , n. (24)

Then, we may search for a preliminary estimate γ̃(n) of γ by minimizing the (squared)
distance between some empirical quantiles and the corresponding theoretical quantiles of
the distribution characterized by the parameter γ. Let us consider m fixed probabilities
0 < p1 < . . . < pm < 1:

γ̃(n) = argmin
γ∈Γ

m∑
ℓ=1

[
e(n)pℓ

(
β̃
(n)

, λ̃(n)
)
−Qγ(pℓ)

]2
, (25)

where e
(n)
pℓ

(
β̃
(n)

, λ̃(n)
)

is the empirical quantile of order pℓ among the residuals computed
in (24) and Qγ(pℓ) is the corresponding theoretical quantile of the distribution associated
with parameter γ. This nonlinear least squares procedure is borrowed from Xu et al. (2014)
and ensures the

√
n-consistency of the preliminary estimator of γ.10 This approach has also

been used in Ricci et al. (2018).

Remark 2. In the case of the Tg,h(ξ, σ)-distribution, the location parameter ξ is the median
of the distribution. Then, it is quite natural to simply take ξ̃(n) as the empirical median of
the regression residuals e

(n)
i

(
β̃
(n)

, λ̃(n)
)

(i = 1, . . . , n).
9The existence of the TSLS relies upon the presence of at least a significant exogenous variable, as

instruments are constructed from spatial lags of determinants. Otherwise, a GMM estimator might be
used.

10Here, we consider the ventiles.
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5.4.2 The practical computation of ∆(n)
(
θ̃
(n)
)

and I
(
θ̃
(n)
)

Computation of ∆(n)
(
θ̃
(n)
)

requires the knowledge of u(n)i

(
θ̃
(n)
)
= F

γ̃(n)

(
e
(n)
i

(
β̃
(n)

, λ̃(n)
))

,
for i = 1, . . . , n. When the error terms are SASϵ,δ(ξ, σ)-distributed, we have

Fγ(e) = Q−1
γ (e) = Φ

(
Sϵ,δ

(
e− ξ

σ

))
, e ∈ R,

and calculating u
(n)
i

(
θ̃
(n)
)

presents no particular difficulties. On the other hand, in the
case of the Tg,h(ξ, σ)-distribution,

Fγ(e) = Q−1
γ (e) = Φ

(
τ−1
g,h

(
e− ξ

σ

))
, e ∈ R.

As no explicit form for the function τ−1
g,h(·) exists, calculating the terms u

(n)
i

(
θ̃
(n)
)

poses
some technical difficulties. To avoid the computationally expensive solution of numeric
inversion of the quantile function, we suggest to replace u

(n)
i

(
θ̃
(n)
)

by

ǔ
(n)
i

(
θ̃
(n)
)
=

R
(n)
i

(
β̃
(n)

, λ̃(n)
)

n+ 1
, i = 1, . . . , n,

where R
(n)
i

(
β̃
(n)

, λ̃(n)
)

is the rank of the regression residual e
(n)
i

(
β̃
(n)

, λ̃(n)
)
. As such,

the ratio
R

(n)
i

(
β̃
(n)

,λ̃(n)
)

n+1 estimates F (n)
(
e
(n)
i

(
β̃
(n)

, λ̃(n)
))

, where F (n)(·) is the empirical
cumulative distribution function of the regression residuals.11

To finally obtain a consistent estimator of the (asymptotic) information matrix I
(
θ̃
(n)
)
,

we simply plug in the values of the estimated parameters β̃
(n)

, λ̃(n), and γ̃(n) in expressions
(13)-(20).

11This strategy could also be used for the SAS distribution, as an alternative to the computation of the
exact u

(n)
i

(
θ̃
(n)

)
.
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Remark 3. In the case of the Tg,h(ξ, σ)-distribution, h is required to be non-negative. As

such, a correction needs to be applied to θ̂
(n)

when ĥ(n) resulting from plugging expressions
in the one-step estimator (1) takes a negative value. As proposed in Xu & Genton (2015),

this correction consists in imposing the point estimate ĥ(n) to zero and replacing θ̂
(n)

bŷ̂
θ
(n)

with

̂̂
θ
(n)

=



̂̂
β
(n)

̂̂
λ
(n)

̂̂σ(n)

̂̂g(n)̂̂
h
(n)


=


β̂
(n)

− Iβ,h

Ih,h
ĥ(n)

λ̂(n) − Iλ,h

Ih,h
ĥ(n)

σ̂(n) − Iσ,h

Ih,h
ĥ(n)

ĝ(n) − Ig,h

Ih,h
ĥ(n)

0

 ,

where Ip,q is the (p, q)-th element of
(
I
(
θ̂
(n)
))−1

.

6 Benefits of considering flexible distributions

In econometrics, there is an increasing body of research focused on developing estimators for
SAR models that do not require specific assumptions on the distribution of the error term.
For example Lee (2004) develops a QML estimator, based on the normality assumption of
the error, that remains consistent even if the distribution is not well specified. Liu et al.
(2010) propose a GMM estimator that does not need any distributional assumption and
relies on a set of linear and quadratic moment conditions. Finally, Robinson (2010), Lee
& Robinson (2020), and Debarsy et al. (2024) develop semiparametric models. The former
two rely on a series approximation of the score function while the latter is based on a
one-step improvement (based on the ranks and the signs of the residuals) of a preliminary
consistent estimator.

In this literature, the estimators developed in 5.2 and 5.3 could serve as alternatives
since both the Tukey g-and-h and the SAS distributions approximate well a wide variety
of unimodal distributions. Estimating the skewness and elongation of the error term distri-
bution together with the regression parameters could be an empirically attractive strategy.
Indeed, by remaining in the purely parametric world, models can have better predictive
accuracy than their semiparametric counterparts. Furthermore, when the parametric as-
sumptions about the data distribution are right (or at least reasonably accurate), there
could be a gain in efficiency with respect to estimators with a less structured approach to
modeling data.

To illustrate the quality of approximation of the flexible distributions considered in this
paper, we generate synthetic data from several commonly used distributions. The process
begins by constructing 1000 relative ranks, uniformly distributed between 0 and 1. These
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values serve as cumulative probabilities and are transformed using the inverse cumulative
distribution function (quantile function) of the target distribution. This ensures that the
generated data follows the desired statistical properties.12

We consider ten distributions: the normal distribution, which serves as a benchmark,
the Laplace distribution, which has a sharper peak and heavier tails, and the Tukey g-and-h
and SAS distributions, which introduce parameters to control skewness and tail behavior.
The beta distribution is bounded and light-tailed, making it useful for modeling proportions,
while the Student’s t-distribution exhibits heavier tails than the normal, making it suitable
for capturing extreme values. The lognormal and Weibull distributions, frequently used
in reliability studies, introduce skewness and take only positive values. The gamma and
chi-squared distributions are also positively skewed, with various applications in statistical
modeling.

Once the data are generated, we fit them using two flexible distributions. To do so, we
rely on a nonlinear least squares procedure, shown in (25) but rather use all the quantiles
of the generated distribution as the dependent variable. The theoretical quantiles used in
(25) either come from the Tg,h distribution (see 21) or from the SAS distribution (see 22).
The standard R2 statistic is used to quantify how well each model explains variability in
the data.

To graphically represent the estimated densities, a nontrivial task for the Tukey g-
and-h model since its density is not explicitly defined, we first compute the cumulative
distribution function of the predicted values from the nonlinear least squares fit. We then
take its numerical derivative to approximate the probability density function. The use of
a regular grid ensures a smooth and accurate density representation, effectively capturing
the key features of the distribution.

Figure 1 below represents the histogram for each considered distribution, together with
estimated densities that are obtained using either a Tg,h(ξ, σ) (in red) or a SASϵ,δ(ξ, σ)
(in blue) distribution. The first general remark is that both distributions constitute very
good approximations of the true distributions, with R2 values no lower than 0.89, which
occurs when the Tg,h distribution is used to approximate the SAS. Except for this case, we
observe a quality of fit of at least 97% for all other distributions. In addition, as expected,
for distributions with lighter tails than the normal, for instance, the Beta(2,2), the SAS
approximation performs better than the Tg,h. For skewed distributions, the elongation
parameter of the Tg,h will be positive only for those with a very long tail. Otherwise, it is
the skewness parameter (g) which determines the length of the tail. This issue does not
arise with the SAS distribution, as its elongation parameter (δ) has no positivity constraint.
Finally, we see that both flexible distributions capture well tail heaviness.

12Essentially, a random variable is obtained by applying a nonlinear transformation to uniform values
regularly spaced over the interval [0, 1], where the quantile function maps probabilities to corresponding
quantiles.
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Figure 1: Adjustment of Tg,h and SASϵ,δ distributions

7 Simulations

The experimental design considered is

yi = β1xi + λWi�y
(n) + ε

(n)
i , i = 1, . . . , n (26)

where the xi’s are generated once (and kept constant over all the simulations) from a
standard normal. We also have β1 = 1, and λ spans values from −2.1 to 0.7, increasing
in steps of 0.2, and also includes the value 0.13 We consider as a connectivity matrix
the binary 10 nearest neighbors constructed from Euclidian distance, based on random
coordinates using two U(0, 10) distributions (also kept constant across the simulations).
This matrix has been normalized using the spectral radius norm of Kelejian & Prucha
(2010). The distributions considered for the simulations are those considered in Figure 1.
In total, 144 alternative scenarios are considered, and each of them has been replicated
1000 times. The simulation setup is run for 3 sample sizes: n = 300, 500, and 900.14

13The constant term, β0, is viewed as a nuisance parameter and estimated as the location parameter of
the error distribution.

14All simulations have been run with Matlab R2019a on the calculation center of the Université de Lille
(Mésocentre de Calcul Scientifique Intensif de l’Université de Lille). Our proposed estimator has also been
programmed in Stata software.
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For each setup, we assess the performance of λ̂ and β̂1 for five alternative estimators:
the QML estimator of Lee (2004), the efficient GMM estimator of Liu et al. (2010), the
R&S semiparametric estimator proposed by Debarsy et al. (2024), and estimators based on
the two flexible distributions considered here, namely the Tg,h(ξ, σ) (TGH estimator) and
the SASϵ,δ(ξ, σ) (SAS estimator).15 All LAN-based estimators use the TSLS as preliminary
estimator for λ and β1 while the preliminary estimator for the distribution parameters of
the TGH and SAS are computed from equation (25) using ventiles of the residuals. Finally,
to improve finite sample performance of LAN estimators, 100 possible refinements of the
one-step estimator is allowed.16

The summary measures considered to assess the performances of estimators are the
median difference of the estimated coefficients to the true values as a measure of their bias
and the interquartile range (divided by 1.349 to guarantee Gaussian consistency towards the
standard deviation) of the point estimates as a measure of dispersion. Finally, we compare
the median standard error to the dispersion of λ̂ over repeated samples to assess the bias
of the estimated standard errors.

7.1 Bias

Figures 2 to 7 report the bias for λ and the β1 over the three considered sample sizes.
We observe a small and constant bias for all classical estimators. We also note that the
flexible distributions and the semiparametric estimator (R&S) perform as well as the usual
estimators, regardless of the true distribution of the error term.

7.2 Efficiency

Figures 8 to 10 compare the dispersion for all estimators of λ across sample sizes. We
note that, except for normally distributed error terms, the flexible distributions proposed
here, along with the semiparametric estimator introduced in Debarsy et al. (2024), are
significantly more efficient than classical estimators. As expected, we observe an inverted
U-shaped relation between dispersion and the value of λ, driven by the fact that when the
parameter gets close to its boundary values, its variance naturally shrinks, similar to the
behavior of the variance of a sample correlation coefficient when it approaches −1 or 1.17

Regarding the efficiency of the estimators for β1, shown in Figures 11 to 13, the flexible
distributions proposed here demonstrate comparable or superior performance compared to
the classical estimators for all the distributions considered. In addition, their performance
is comparable to the R&S estimator. This result holds consistently across all sample sizes.

15For the normal distribution setup, we use the ML estimator of Lee (2004).
16These refinements are optional and a single application of the one-step estimator is theoretically suffi-

cient.
17Let us nevertheless remember that λ is not a correlation coefficient as boundaries of its parameter space

may exceed 1 in absolute value.
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Figure 2: Bias of λ̂, n = 300

Figure 3: Bias of β̂1, n = 300
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Figure 4: Bias of λ̂, n = 500

Figure 5: Bias of β̂1, n = 500
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Figure 6: Bias of λ̂, n = 900

Figure 7: Bias of β̂1, n = 900
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Figure 8: Dispersion of λ̂, n = 300

Figure 9: Dispersion of λ̂, n = 500
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Figure 10: Dispersion of λ̂, n = 900

Figure 11: Dispersion of β̂1, n = 300
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Figure 12: Dispersion of β̂1, n = 500

Figure 13: Dispersion of β̂1, n = 900

32



7.3 Pseudo-bias of standard errors

Figures 14 to 16 assess the discrepancy in the estimated standard errors of the coefficient
λ when the error term is assumed to be SASϵ,δ(ξ, σ)-distributed. As mentioned above,
this pseudo-bias is obtained by comparing the median standard errors in repeated samples
with the dispersion of the estimated coefficient (measured by the standardized interquar-
tile range). We generally do not observe significant differences between the two curves,
regardless of the true distribution for the error terms. Only when the errors follow a Log-
Normal distribution do we note a slight discrepancy for the smallest sample size (n = 300).
However, this gap narrows for n = 500 and completely vanishes on the largest sample size
(n = 900). Of course, both median standard errors and empirical dispersion decrease as
the sample size increases.

Finally, Figures 17 to 19 present the same information but when the error term is
assumed to be Tg,h(ξ, σ)-distributed. We note small discrepancies between the two curves
when the true distribution does not exhibit a left-tail, such as the χ2

5, the Γ(0, 1, 2) or
the LogNormal(0,1) distributions. These differences diminish as the sample size increases,
but they do not completely disappear. These results can be attributed to the fact that
the Tukey g-and-h distribution does not allow for tails lighter than those of the gaussian
(h < 0), which limits its ability to accurately approximate such parametric distributions. In
contrast, the SAS distribution captures this feature better because its elongation parameter
allows for lighter-than-normal tails.

8 Conclusion

In this paper, we propose a general approach to obtain an efficient parametric estimator for
the SAR model within the framework of Local Asymptotic Normality (LAN). The estimator
is designed to accommodate any parametric distribution with an explicitly defined quantile
function. In addition to presenting general results, we derive the estimator for two highly
flexible distributions, namely the Tukey g-and-h and Sinh-Arcsinh (SAS) distributions, both
of which can effectively approximate a wide range of distributions. These distributions are
especially useful when the error distribution is unknown or exhibits non-standard features,
such as asymmetry or heavy tails. Monte Carlo simulations illustrate that the proposed
estimator performs well relative to traditional approaches, particularly when the true error
distribution significantly deviates from normality.

Finally, we plan to expand this research in at least two directions. The first one relates
to the treatment of heteroskedastic and/or clustered errors. The second pertains to the
accounting of potential endogeneity of the determinants and/or of the connectivity matrix.
Addressing these issues is crucial as they will expand the practical applicability of these
flexible estimators across a broader range of empirical contexts.
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Figure 14: Behavior of standard errors for λ̂ assuming SASϵ,δ(ξ, σ)-distributed errors, n =
300
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Figure 15: Behavior of standard errors for λ̂ assuming SASϵ,δ(ξ, σ)-distributed errors, n =
500

Figure 16: Behavior of standard errors for λ̂ assuming SASϵ,δ(ξ, σ)-distributed errors, n =
900
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Figure 17: Behavior of standard errors for λ̂ assuming Tg,h(ξ, σ) -distributed errors, n =
300

Figure 18: Behavior of standard errors for λ̂ assuming Tg,h(ξ, σ)-distributed errors, n = 500
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Figure 19: Behavior of standard errors for λ̂ assuming Tg,h(ξ, σ)-distributed errors, n = 900
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A Appendix: Fisher information matrix under P
(n)
θ

Under P
(n)
θ , the residuals e

(n)
1 (β, λ), . . . , e

(n)
n (β, λ) are i.i.d. with density function fγ and

quantile function Qγ . Consequently, under P(n)
θ , the random variables u(n)i (θ) = Q−1

γ

(
e
(n)
i (β, λ)

)
,

i = 1, . . . , n, are i.i.d. U(0, 1). Note that all the expectations considered hereafter will be
computed under P

(n)
θ .

In this Appendix, to avoid making the notations unnecessarily cumbersome, we simply
write e

(n)
i , u(n)i and G(n) for e

(n)
i (β, λ), u(n)i (θ) and G(n)(λ), respectively.

Let us consider the following expressions for the different components of the central
sequence ∆(n)(θ) (see Section 4.2):

• Component relative to β:

∆
(n)
β (θ) =

1√
n

n∑
i=1

Q̃γ

(
u
(n)
i

)
x
(n)
i ;
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• Component relative to λ:

∆
(n)
λ (θ) = − 1√

n
tr
(
G(n)

)
+

1√
n

n∑
i=1

Q̃γ

(
u
(n)
i

)
W

(n)
i� y(n).

Since, in view of (3),

W
(n)
i� y(n) = G

(n)
i�

(
X(n)β + e(n)

)
= G

(n)
i� X(n)β +

n∑
j=1

G
(n)
ij e

(n)
j

= G
(n)
i� X(n)β +G

(n)
ii e

(n)
i +

n∑
j=1
j ̸=i

G
(n)
ij e

(n)
j ,

we get

∆
(n)
λ (θ) = L

(n)
1 (θ) + L

(n)
2 (θ) + L

(n)
3 (θ) + L

(n)
4 (θ),

with

L
(n)
1 (θ) =

1√
n

n∑
i=1

Q̃γ

(
u
(n)
i

)(
G

(n)
i� X(n)β

)
,

L
(n)
2 (θ) =

1√
n

n∑
i=1

Q̃γ

(
u
(n)
i

)
Qγ(u

(n)
i )G

(n)
ii ,

L
(n)
3 (θ) =

1√
n

n∑
i=1

n∑
j=1
j ̸=i

Q̃γ

(
u
(n)
i

)
Qγ(u

(n)
j )G

(n)
ij ,

L
(n)
4 (θ) =− 1√

n
tr
(
G(n)

)
;

• Component relative to γr (r ∈ {1, . . . , R}):

∆(n)
γr (θ) =

1√
n

n∑
i=1

Hγ;r

(
u
(n)
i

)
.

We have, for all i = 1, . . . , n and for r, s ∈ {1, . . . , R} , r ̸= s:

• E
[
Qγ

(
u
(n)
i

)]
= E

[
e
(n)
i

]
=
∫ 1
0 Qγ(u)du

not
= µγ ;
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• E
[
Q2

γ

(
u
(n)
i

)]
= E

[(
e
(n)
i

)2]
=
∫ 1
0 Q2

γ(u)du
not
= νγ ;

• E
[
Q̃γ

(
u
(n)
i

)]
= E

[
ϕfγ

(
e
(n)
i

)]
=
∫∞
−∞ ϕfγ (e)fγ(e)de = −

∫∞
−∞ f ′

γ(e)de = − [fγ(e)]
∞
−∞ =

0;

• E
[
Q̃2

γ

(
u
(n)
i

)]
= E

[
ϕ2
fγ

(
e
(n)
i

)]
=
∫ 1
0 Q

2
γ(u)du

not
= Iγ ;

• E
[
Q̃γ

(
u
(n)
i

)
Qγ

(
u
(n)
i

)]
= E

[
ϕfγ

(
e
(n)
i

)
e
(n)
i

]
=
∫∞
−∞ ϕfγ (e)efγ(e)de = −

∫∞
−∞ f ′

γ(e)ede =

− [fγ(e)e]
∞
−∞ +

∫∞
−∞ fγ(e)de = 0 + 1 = 1;

• E
[
Q̃2

γ

(
u
(n)
i

)
Qγ

(
u
(n)
i

)]
=
∫ 1
0 Q̃2

γ(u)Qγ(u)du
not
= Kγ ;

• E
[
Q̃2

γ

(
u
(n)
i

)
Q2

γ

(
u
(n)
i

)]
=
∫ 1
0 Q̃2

γ(u)Q
2
γ(u)du

not
= Lγ ;

• E
[
Hγ;r

(
u
(n)
i

)]
= 0;

• E
[
H2

γ;r

(
u
(n)
i

)]
=
∫ 1
0 H2

γ;r(u)du
not
= Jγ;r;

• E
[
Hγ;r

(
u
(n)
i

)
Hγ;s

(
u
(n)
i
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=
∫ 1
0 Hγ;r(u)Hγ;s(u)du
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• E
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(
u
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(
u
(n)
i

)]
=
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0 Q̃γ(u)Hγ;r(u)du
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(
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=
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Straightforward calculations give us the following results:

a) E
[
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∆
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where
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c) for r ∈ {1, . . . , R}:

E
[
∆

(n)
β (θ)∆(n)

γr (θ)
]
= Hγ;r

{
1

n

n∑
i=1

x
(n)
i

}
;

d)

E
[(

∆
(n)
λ (θ)

)2]
= E

[(
L
(n)
1 (θ)

)2]
+ E

[(
L
(n)
2 (θ)

)2]
+ E

[(
L
(n)
3 (θ)

)2]
+ E

[(
L
(n)
4 (θ)

)2]
+ 2E

[
L
(n)
1 (θ)L

(n)
2 (θ)

]
+ 2E

[
L
(n)
1 (θ)L

(n)
3 (θ)

]
+ 2E

[
L
(n)
1 (θ)L

(n)
4 (θ)

]
+ 2E

[
L
(n)
2 (θ)L

(n)
3 (θ)

]
+ 2E

[
L
(n)
2 (θ)L

(n)
4 (θ)

]
+ 2E

[
L
(n)
3 (θ)L

(n)
4 (θ)

]
,

42



where
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(
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e) for r ∈ {1, . . . , R}:
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where

E
[
L
(n)
1 (θ)∆(n)

γr (θ)
]
= Hγ;r

{
1

n

n∑
i=1

G
(n)
i� X(n)β

}
,

E
[
L
(n)
2 (θ)∆(n)

γr (θ)
]
= Mγ;r

tr
(
G(n)

)
n

,

E
[
L
(n)
3 (θ)∆(n)

γr (θ)
]
= Hγ;rµγ

{
nG

(n)
�� −

tr
(
G(n)

)
n

}
,

E
[
L
(n)
4 (θ)∆(n)

γr (θ)
]
= 0;

f) for r ∈ {1, . . . , R}:

E
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∆(n)
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)2]
= Jγ;r;

g) for r, s ∈ {1, . . . , R}, r ̸= s:

E
[
∆(n)
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]
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The expression for the parametric Fisher information matrix I(θ) follows directly from the
above results.
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