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Abstract

Linear regression models with spillover effects generally cannot be estimated using
ordinary least squares given the simultaneity that results from interactions among
individuals. Instead, they are fitted using two-stage least squares (Kelejian & Prucha
1998, Bramoullé et al. 2009), generalized method of moments (Liu et al. 2010), (quasi-)
maximum likelihood typically under the normality assumption (Lee 2004) or adaptive
estimation (Robinson 2010).

In this article, we propose a semiparametrically efficient estimator, based on the
Local Asymptotic Normality theory of Le Cam (1960) and on the work of Hallin et al.
(2006, 2008) on residuals ranks-and-signs, that only requires strong unimodality of
errors’ distribution as a distributional assumption. Monte Carlo simulations show that
the suggested estimator performs well in comparison to competing estimators. A trade
regression from Behrens et al. (2012) is used to illustrate how empirical findings might
greatly change when the Gaussian distribution is not imposed.
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1 Introduction

It is well known that models that explicitly account for endogenous spillover effects, such as Spatial
Autoregressive (SAR) models in the spatial econometrics literature, cannot be estimated using
Ordinary Least Squares. This has led to the development of various estimators based on Two
Stages Least Squares (TSLS), the Generalized Method of Moments (GMM), Maximum Likelihood
(ML), and adaptive estimations (ADP) (see Kelejian & Prucha 1998, 1999, Bramoullé et al. 2009,
Lee 2004, 2007, Liu et al. 2010, Robinson 2010, Lee & Robinson 2020).

ML estimation yields the most efficient estimator if the distribution of the error term coincides
with the assumed one (typically the Gaussian). However, if the error term’s distribution is unknown,
the ML estimator cannot be computed.

Lee (2004) develops a quasi-ML (QML) estimator assuming normal errors, which takes into
consideration the third and fourth moments of the distribution in the Fisher Information matrix.
This Gaussian QML estimator remains consistent even if the error distribution is non-normal, but
its efficiency is lower than that of the ML estimator under the true distribution.1

Using both linear and quadratic moments, Liu et al. (2010) introduce a GMM estimator that
does not require any assumption about the distribution of error terms. When the error terms
are normally distributed, the authors show that this estimator is as efficient as the ML estimator.
Furthermore, it performs generally better than the Gaussian QML estimator when the normality
assumption is not satisfied.

Robinson (2010) proposes a different methodology, using an adaptive estimator of the param-
eters of interest, that relies on series estimates of the score function. This method does not need
to specify a parametric distribution for the error term and, under a set of assumptions detailed
later, leads to an efficient estimator. Similarly, Lee & Robinson (2020) present an adaptive esti-
mator designed specifically for pure spatial models that do not include explanatory variables. This
estimator is useful for a wide variety of interaction models, including spatial autoregressive, spatial
moving average, and matrix exponential spatial specifications.

In this paper, we propose a semiparametric approach, where the innovation density is viewed
as an infinite-dimensional nuisance parameter in the regression model. In such a semiparametric
context, one can define an estimator for the regression model’s vector of parameters that asymp-
totically approaches the semiparametric efficiency bound, provided that a suitable function of the
residuals is used.

More precisely, relying on the concept of Local Asymptotic Normality (LAN) introduced by
Le Cam (1960) and on the work of Hallin et al. (2006, 2008), we build a ranks-and-signs-based
(R&S) semiparametric estimator for linear models with spillovers which is asymptotically semi-
parametrically efficient.

We then perform Monte Carlo experiments to evaluate the behavior of the proposed estimator
in finite samples and observe that it performs well compared to existing alternatives.

1The consistency of QML under Normality comes from the fact that the Gaussian distribution belongs
to the linear exponential family (see Gourieroux et al. 1984).
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Finally, using a trade regression proposed by Behrens et al. (2012), we illustrate the usefulness of
the developed estimator in applied research. In one of their intermediate empirical results, relying
on QML, the authors show that the endogenous (spillover) effect is non-statistically significant.
Using the R&S estimator, we get a point estimate that is 2.5 times higher and strongly statistically
different from 0.

The rest of the paper is organized as follows. Section 2 presents the Local Asymptotic Nor-
mality property on which the estimator is built. Section 3 presents the model to be estimated and
details how the semiparametric estimation procedure is obtained. This section also derives the fully
semiparametrically efficient estimator for the model under study. Section 4 presents the practical
implementation of the proposed estimator. Section 5 is dedicated to Monte Carlo experiments
which compare the R&S estimator with TSLS, QML, GMM, and ADP. The efficiency of the R&S
is comparable to that of the ML estimator when errors are normally distributed. However, when
the error component is distributed according to another distribution function, the R&S estimator
exhibits a substantially higher efficiency compared to the alternative estimators. Section 6 applies
the R&S estimator to a trade model developed by Behrens et al. (2012) and compares the point es-
timates and their standard errors to those obtained in the original paper by relying on the Gaussian
QML of Lee (2004) as well as to GMM and ADP estimators. Finally, section 7 concludes.

2 LAN property

In this section we rely on Hallin (1996) and Van der Vaart (1998) to briefly describe the LAN prop-
erty.2 The notations and definitions adopted are those of Hallin (1996) (from page 129 onwards).

Let y(n) =
(
y
(n)
1 , . . . , y

(n)
n

)T
, n ∈ N0, be a sequence of observations described by the sequence of

statistical models E(n) =
(
Rn,B(Rn),P(n)

)
, where P(n) =

{
P
(n)
θ : θ ∈ Θ

}
is a parametric family of

probability distributions defined on (Rn,B(Rn)) and indexed by the parameter vector θ ∈ Θ (with

Θ an open set of RK); observation y(n) is a random vector, of distribution P
(n)
θ .

Consider the sequences of probability distributions P
(n)
θ and P

(n)

θ+ν(n)τ (n) , where ν(n) is a

(K ×K) non singular matrix such that ∥ν(n)∥ → 0 for n → ∞ (∥ · ∥ is the matrix norm induced
by the euclidean norm3), and τ (n) is a (K × 1) real vector such that supn∈N0

(τ (n))Tτ (n) <∞. The
logarithm of the likelihood ratio is shown in equation (1):

Λ
(n)

θ+ν(n)τ (n)/θ
= ln

dP(n)

θ+ν(n)τ (n)

dP
(n)
θ

 . (1)

2The interested reader may also consult Le Cam (1986) and Le Cam & Yang (2000).
3∥A∥ = sup

∥x∥=1

∥Ax∥ = (max{eigenvalues of AAT})1/2.
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Le Cam (1986) highlighted that a very general structure characterized by the behavior of

Λ
(n)

θ+ν(n)τ (n)/θ
is sufficient (and almost necessary) for the study of the asymptotic performances

of almost all statistical inferential procedures for θ. This is called the LAN property.

Definition. (cf. Definition 4.1, page 131 in Hallin (1996)) The sequence of parametric statistical
models E(n) =

(
Rn,B(Rn),P(n)

)
is said to be locally asymptotically normal if, for all θ ∈ Θ,

there exists a sequence ∆(n)(θ) of K-dimensional and (y(n),θ)-measurable random vectors, and a

(K ×K) symmetric positive semi-definite matrix I(θ), such that, under P
(n)
θ , as n→ ∞:

(i) for every sequence τ (n) such that supn∈N0
(τ (n))Tτ (n) <∞,

Λ
(n)

θ+ν(n)τ (n)/θ
= (τ (n))T∆(n)(θ)− 1

2
(τ (n))TI(θ)τ (n) + oP(1) ; (2)

(ii) ∆(n)(θ)
L−→ N (0, I(θ)) .

The vector ∆(n)(θ) is called the central sequence. It is only defined up to oP(1) (under P
(n)
θ , as

n→ ∞).

The LAN property of the sequence of statistical models E(n) implies namely that, if θ̃
(n)

is a√
n-consistent estimator of θ, then the one-step estimator

θ̂
(n)

= θ̃
(n)

+
1√
n

(
I(θ̃

(n)
)
)−1

∆(n)(θ̃
(n)

)

is an asymptotically efficient estimator of θ (see, for instance, Hallin et al. 2008, p.399). In other

words, θ̂
(n)

is asymptotically equivalent to the ML estimator of θ: under P
(n)
θ , as n→ ∞,

√
n
(
θ̂
(n)

− θ
)

L→ N
(
0, (I(θ))−1

)
. (3)

According to Le Cam (1970), the conditions for LAN to hold are less restrictive than the conven-
tional differentiability conditions needed for maximum likelihood. He has shown that LAN only
requires the density function to be differentiable in quadratic mean. Broadly speaking, quadratic
mean differentiability (QMD) requires a density function to be differentiable almost everywhere.
The Laplace distribution, for example, is not differentiable at all points but nevertheless exhibits
the QMD property. This makes it theoretically unsuitable for ML but appropriate for a one-step
estimator based on the LAN property.
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3 Efficient estimation of the semiparametric linear model

with spillovers

3.1 The model

Consider the following linear model with endogenous spillover effects.4 For i = 1, . . . , n,

y
(n)
i = (x

(n)
i )Tβ + λ

n∑
j=1
j ̸=i

w
(n)
ij y

(n)
j + ε

(n)
i , (4)

where n is the considered sample size, x
(n)
i =

(
1, x

(n)
i1 , . . . , x

(n)
iK

)T
is the vector of explanatory

variables for individual i and β = (β0, β1, . . . , βK)T ∈ RK+1 is the associated vector of regression

parameters,
∑n

j=1
j ̸=i

w
(n)
ij y

(n)
j represents endogenous spillover effects and λ is the associated regression

coefficient. The definition of the relevant interaction scheme, modeled by the elements w
(n)
ij of the

general connectivity matrix W(n), depends on the question under study. In the social-network
literature, peers are individuals who influence the behavior of a specific individual i, such as friends,
geographic neighbors, housemates, or coworkers. In the context of international trade, Behrens et al.
(2012) show that links between regions should be modeled by their relative share of the population.

Finally, ε
(n)
1 , . . . , ε

(n)
n are i.i.d. error terms with unknown distribution function F and density f

assumed, without any loss of generality, to have a median of zero (this is needed to ensure the
identification of the intercept β0 of the model).

The definition and properties of the ranks-and-signs-based estimator proposed here require some

regularity conditions detailed below. Assumption 1 relates to the interaction terms w
(n)
ij and on

the endogenous effects parameter λ, while Assumption 2 concerns the covariate vectors x
(n)
i ; these

first two assumptions come from Lee (2004). Assumption 3 specifies regularity conditions for the
unknown distribution of the error terms.

Assumption 1.

(i) The elements w
(n)
ij of the matrix W(n) are at most of order 1/h(n) — they are O(1/h(n))

— uniformly in all i, j, where the rate sequence {h(n)} is such that the ratio h(n)/n → 0 as

n→ ∞.5 As a normalization, w
(n)
ii = 0 for all i.

4As soon as we abstract from a group interaction scheme (with groups of equal size) and assume an
exogenous interaction scheme, the model can include contextual effects (neighbors’ characteristics) without
additional difficulties.

5That is, for some real constant c, there exists a finite integer N such that, for all n ≥ N , |h(n)w(n)
ij | < c

for all i, j (see, e.g. White 1984, p.14).
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(ii) Let In be the (n × n)-identity matrix. In model (4), the matrix In − λW(n) is nonsingular.

Moreover, the sequences
{
W(n)

}
and

{(
In − λW(n)

)−1
}
are uniformly bounded in both row

and column sums (Horn & Johnson 1985).

(iii) In the sequence
{(

In − ℓW(n)
)−1
}
, matrices

(
In − ℓW(n)

)−1
are bounded in either row or

column sums, uniformly in ℓ in an open set parameter space Λ. In consequence, the true
value of parameter λ in model (4) is assumed to belong to the interior of Λ.

The definition of the parameter space Λ in the above assumption depends on W(n). For a

connectivity matrix with real eigenvalues, Λ may be defined as the open subset
(
1/ω

(n)
max, 1/ω

(n)
min

)
,

where ω
(n)
min and ω

(n)
max are respectively the minimal and maximal eigenvalues of W(n). To ensure the

same parameter space for λ for different connectivity matrices, it is most of the time normalized.
Kelejian & Prucha (2010) proposes two matrix norms, namely the spectral radius and the minimum
between the absolute row and column sum norms, which allow to restrict Λ to be the open subset
(−1, 1).6

Assumption 2. The elements of x
(n)
i are uniformly bounded constants for all n. Besides, the

limn→∞
∑n

i=1 x
(n)
i (x

(n)
i )T/n exists and is non-singular.

Remark. By writing model (4) for the whole sample, we compute its reduced form as:

y(n) =
(
In − λW(n)

)−1 (
X(n)β + ε(n)

)
,

where y(n) =
(
y
(n)
1 , . . . , y

(n)
n

)T
, X(n) =

(
x
(n)
1 , . . . ,x

(n)
n

)T
, and ε(n) =

(
ε
(n)
1 , . . . , ε

(n)
n

)T
. Further,

we have
W(n)y(n) = G(n)(λ)

(
X(n)β + ε(n)

)
, (5)

with G(n)(λ) = W(n)
(
In − λW(n)

)−1
. Let θ = (βT, λ)T, W

(n)
i� be the ith row of matrix W(n),

G
(n)
i� (λ) the ith row of matrix G(n)(λ) and e

(n)
i (θ) (i = 1, . . . , n) be the residuals associated with

the value θ of the parameters vector, with e(n)(θ) =
(
e
(n)
1 (θ), . . . , e

(n)
n (θ)

)T
. We may write:

e
(n)
i (θ) = y

(n)
i − (x

(n)
i )Tβ − λW

(n)
i� y(n) (6)

= y
(n)
i − (x

(n)
i )Tβ − λG

(n)
i� (λ)

(
X(n)β + e(n)(θ)

)
= y

(n)
i − (x

(n)
i )Tβ − λG

(n)
i� (λ)X(n)β − λ

n∑
j=1

G
(n)
ij (λ)e

(n)
j (θ). (7)

6The row-normalization is also widely used in applied work. However, unless it is theoretically grounded
(see, for instance, Patacchini & Zenou 2012), or for special cases, such as assigning the same number of
neighbors to each observation, this normalization should not be used as it introduces misspecification in the
model (see Neumayer & Plümper 2016).
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Assumption 3. The distribution function F and density function f of the i.i.d. error terms ε
(n)
i

(i = 1, . . . , n) should satisfy the following regularity conditions:
(i) F (0) =

∫ 0
−∞ f(e)de = 1/2; (ii) µf =

∫∞
−∞ ef(e)de <∞ and 0 < νf =

∫∞
−∞ e2f(e)de <∞; (iii) f

is absolutely continuous, strictly positive for all points in R, with (almost everywhere) derivative

f ′ and finite Fisher information for location If =
∫∞
∞ ϕ2f (e)f(e)de, where ϕf (·) = −f ′(·)

f(·) ; (iv) f

is strongly unimodal, i.e. function ϕf is non-decreasing7; (v) Kf =
∫∞
−∞ ϕ2f (e)ef(e)de < ∞ and

0 < Qf =
∫∞
−∞ ϕ2f (e)e

2f(e)de <∞.

Let F0 = {f : R → [0,∞) such that f satisfies Assumption 3}. Since the density of errors in
model (4) is unknown but assumed to belong to F0, it plays the role of a nonparametric (infinite
dimensional) nuisance. Hence, specification (4) defines a semiparametric model

E(n)
0 =

(
Rn,B(Rn),

{
P
(n)
f ;θ : f ∈ F0,θ = (βT, λ)T ∈ RK+1 × Λ

})
.

Under P
(n)
f ;θ, the residuals e

(n)
i (θ) (i = 1, . . . , n) defined by (6) are i.i.d. with (marginal) density

f ∈ F0.
It is important to emphasize that the median, not the mean, is used as the location parameter

of the innovation density function, and is assumed to be 0.
The rationale behind selecting the zero-median over the traditional zero-mean assumption is

motivated by the fact that the former allows us to identify a simple group of transformations of Rn
that ”generates” our semiparametric SAR model and, consequently, to define a semiparametrically
efficient estimator of θ = (βT, λ)T using the so-called maximal invariant associated with this group
of transformations. This will be further detailed in Section 3.4.

Let us finally introduce some additional notations that will be used throughout the text:

• For a probability density function f ∈ F0: and for u ∈ (0, 1), φf (u) = ϕf
(
F−1(u)

)
.

• For a square (n × n)-matrix A(n): A
(n)
i� is the ith row of A(n), A

(n)
� = 1

n

∑n
i=1A

(n)
i� is the

average (1× n)-vector of the n rows of A(n), A
(n)
�� = 1

n2

∑n
i=1

∑n
j=1Aij is the average of the

n2 components of matrix A(n), and tr(A(n)) is the trace of A(n).

3.2 Semiparametric efficiency

If we consider that the error term density is known and equal to a specific f , the problem of the
estimation of the parameters vector θ = (βT, λ)T occurs in the context of the parametric submodel

E(n)
0;f =

(
Rn,B(Rn),

{
P
(n)
f ;θ : θ = (βT, λ)T ∈ RK+1 × Λ

})
7This is a classical assumption for semiparametric estimation involving ranks.
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of E(n)
0 . In this parametric context, maximum likelihood estimation of θ is straightforward. The

log-likelihood function associated to E(n)
0;f is

lnL
(
θ
∣∣∣y(n),W(n),X(n)

)
= ln

∣∣∣det(In − λW(n)
)∣∣∣+ n∑

i=1

ln f
(
e
(n)
i (θ)

)
. (8)

Estimating θ efficiently in a semiparametric setting is more difficult. Keep in mind that when
the error distribution is treated as an unknown nuisance component in the model, there is usually a
loss of precision in the estimation of the relevant parameters. One possible intuitive explanation for
this efficiency loss is that small changes to both the relevant parameters and the model’s nuisance

component can have a comparable effect on the distribution of the observations y
(n)
i (i = 1, . . . , n)

and hence, cannot be distinguished, even asymptotically. Knowing the efficiency bounds for the
estimation of the parameters of interest in semiparametric models is of fundamental importance
(see for instance Newey 1990, Bickel et al. 1993) as they offer a benchmark against which to evaluate
the asymptotic efficiency of any semiparametric estimator.

As explained below, since any parametric submodel E(n)
0;f is LAN, asymptotically efficient infer-

ence for θ in the semiparametric model E(n)
0 can be conducted on the basis of a ranks-and-signs

based central sequence for θ.
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3.3 Parametrically efficient estimation of θ under P
(n)
f ;θ

For every density function f ∈ F0, the sequence of parametric submodels

E(n)
0;f =

(
Rn,B(Rn),

{
P
(n)
f ;θ : θ = (βT, λ)T ∈ RK+1 × Λ

})
is LAN.8 Hence, classical likelihood inference for θ in the parametric submodel E(n)

0;f can be based
on the central sequence

∆
(n)
f (θ) =

1√
n

∂

∂θ

{
lnL

(
θ
∣∣∣y(n),W(n),X(n)

)}
,

which can be decomposed as

∆
(n)
f (θ) =

(
∆

(n)
f ;β(θ)

∆
(n)
f ;λ(θ)

)

=

 1√
n

∑n
i=1

∂
∂β

{
ln f

(
e
(n)
i (θ)

)}
1√
n
∂
∂λ

{
ln
∣∣det (In − λW(n)

)∣∣}+ 1√
n

∑n
i=1

∂
∂λ

{
ln f

(
e
(n)
i (θ)

)} 
=

 1√
n

∑n
i=1 ϕf

(
e
(n)
i (θ)

)
x
(n)
i

− 1√
n
tr
(
G(n)(λ)

)
+ 1√

n

∑n
i=1 ϕf

(
e
(n)
i (θ)

)
W

(n)
i� y(n)

 ,

where tr
(
G(n)(λ)

)
is the trace of matrix G(n)(λ). Under P

(n)
f ;θ, as n→ ∞,

∆
(n)
f (θ)

L−→ N (0, If (θ)) ,

where If (θ) is the (parametric) Fisher information matrix for θ given by

If (θ) =

(
If ;β(θ) If ;β,λ(θ)

(If ;β,λ(θ))
T If ;λ(θ)

)
,

where

If ;β(θ) = If lim
n→∞

{
1

n

n∑
i=1

x
(n)
i (x

(n)
i )T

}
,

8Taking τ (n) = τ for all n, and ν(n) = 1√
n
IK , where IK is the identity matrix of dimension K, we obtain

the decomposition (2) of the logarithm of the likelihood ratio, Λ
(n)

θ+τ/
√
n/θ

= ln

(
L(θ+τ/

√
n|y(n),W(n),X(n) )

L(θ|y(n),W(n),X(n) )

)
,

using a second order Taylor expansion of lnL
(
θ + τ/

√
n
∣∣y(n),W(n),X(n)

)
around θ.
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If ;β,λ(θ) = If lim
n→∞

{
1

n

n∑
i=1

x
(n)
i

(
G

(n)
i� (λ)X(n)β

)}

+Kf lim
n→∞

{
1

n

n∑
i=1

x
(n)
i G

(n)
ii (λ)

}
+ Ifµf lim

n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

x
(n)
i G

(n)
ij (λ)

 ,

and

If ;λ(θ) = If lim
n→∞

{
1

n

n∑
i=1

(
G

(n)
i� (λ)X(n)β

)2}

+ (Qf − 1) lim
n→∞

{
1

n

n∑
i=1

(
G

(n)
ii (λ)

)2}
+ Ifνf lim

n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
ij (λ)

)2
+ 2Kfµf lim

n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ii (λ)G

(n)
ij (λ)

+ lim
n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ij (λ)G

(n)
ji (λ)


+ Ifµ2f lim

n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i,j

G
(n)
ij (λ)G

(n)
ik (λ)


+ 2Kf lim

n→∞

{
1

n

n∑
i=1

(
G

(n)
i� (λ)X(n)β

)
G

(n)
ii (λ)

}

+ 2 Ifµf lim
n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
i� (λ)X(n)β

)
G

(n)
ij (λ)

 ,

with µf , νf , If , Kf , and Qf defined in Assumption 3.9

In particular, if θ̃
(n)

is a
√
n-consistent preliminary estimator of θ, then

θ̂
(n)

f = θ̃
(n)

+
1√
n

(
If (θ̃

(n)
)
)−1

∆
(n)
f (θ̃

(n)
)

9Appendix A.1 contains some details on the derivation of the different terms.
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is an asymptotically parametrically efficient estimator of θ: under P
(n)
f ;θ, as n→ ∞,

√
n
(
θ̂
(n)

f − θ
)

L→ N
(
0, (If (θ))

−1
)
.

3.4 Semiparametrically efficient estimation of θ under P
(n)
f ;θ

As ∆
(n)
f (θ) is in general not properly centered under density h ̸= f (hence, it does not exhibit

central limit behavior), inference based on this central sequence is not valid when density f used

for the score function ϕf (·) does not coincide with the true error density; the estimator θ̂
(n)

f is no
longer

√
n-consistent.

Typically, as explained in Hallin et al. (2008), semiparametric theory optimally solves this issue

by projecting the central sequence ∆
(n)
f (θ) onto the so-called tangent spaces that are related to

the variations of the error term density f (see Bickel et al. 1993). These projections produce
score functions that are semiparametrically efficient, defining a semiparametric central sequence

denoted as ∆
(n)∗
f (θ). However, Hallin & Werker (2003) show that, in the presence of a suitable

group of transformations that “generates” any fixed-θ submodel of the semiparametric model, a
semiparametric central sequence is more readily and intuitively obtained, with the added benefit

of not being dependent on any particular distribution, by conditioning ∆
(n)
f (θ) on the maximal

invariant for this group of transformations. In this paper, we rely on this second approach to

determine ∆
(n)∗
f (θ).

Consider the fixed-θ submodel E(n)
0;θ =

(
Rn,B(Rn),

{
P
(n)
f ;θ : f ∈ F0

})
of E(n)

0 as in Hallin et al.

(2006). This submodel is characterized by (i) the residual function defined by (6) and (ii) a
concept of white noise with (marginal) density f such that the one defined in Assumption 3:

y(n) has distribution P
(n)
f ;θ if and only if r

(n)
θ (y(n)) is white noise with (marginal) density f . De-

note by R(n)(θ) =
(
R

(n)
1 (θ), . . . , R

(n)
n (θ)

)T
and by s(n)(θ) =

(
s
(n)
1 (θ), . . . , s

(n)
n (θ)

)T
the vec-

tor of ranks and the vector of signs associated with the residuals e
(n)
1 (θ), . . . , e

(n)
n (θ). Define

N
(n)
+ (θ) = ♯

{
i : s

(n)
i (θ) = +1

}
and N

(n)
− (θ) = ♯

{
i : s

(n)
i (θ) = −1

}
as the numbers of positive

and negative residuals, respectively. Clearly, under P
(n)
f ;θ (for any f ∈ F0), R

(n)(θ) is uniformly

distributed on the set of the n! permutations of {1, . . . , n}, N (n)
− (θ) + N

(n)
+ (θ) = n almost surely,

and N
(n)
+ (θ) and N

(n)
− (θ) are both binomial random variables Bin(n, 1/2). Moreover, it is well

known that the vector of ranks R(n)(θ) is stochastically independent of the order statistics, and

thus of N(n)(θ) =
(
N

(n)
− (θ), N

(n)
+ (θ)

)
.

Let T0 be the set of all continuous, strictly monotone increasing transformations t : R → R
such that lime→±∞ t(e) = ±∞ and t(0) = 0. Defining the transformation t(n) : Rn → Rn by
t(n)(e1, . . . , en) =

(
t(e1), . . . , t(en)

)
for t ∈ T0, we have that the group of order preserving transfor-
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mations (acting on Rn)

T
(n)
0;θ =

{(
r
(n)
θ

)−1
◦ t(n) ◦ r(n)θ ; t ∈ T0

}
is a generating group for E(n)

0;θ . This generating group has for maximal invariant the vectors of

residuals ranks R(n)(θ) and signs s(n)(θ), or, equivalently, the vectors R(n)(θ) and N(n)(θ).
In this context, following the conditioning argument of Hallin & Werker (2003), we get a

semiparametric central sequence, under P
(n)
f ;θ, by taking the expectation of ∆

(n)
f (θ) conditionally

to R(n)(θ) and N(n)(θ), as stated in Proposition 1 below.10

Proposition 1. Under P
(n)
f ;θ, as n→ ∞,

E
[
∆

(n)
f (θ)

∣∣∣N(n)(θ),R(n)(θ)
]
= ∆

(n)∗
f (θ) + oP(1)

= ∆̃
(n)∗
f (θ) + oP(1),

where ∆
(n)∗
f (θ) =

(
∆

(n)∗
f ;β (θ)

∆
(n)∗
f ;λ (θ)

)
with

∆
(n)∗
f ;β (θ) =

1√
n

n∑
i=1

ϕf

(
e
(n)
i (θ)

)(
x
(n)
i − x(n)

)
+ 2f(0)x(n) 1√

n

n∑
i=1

s
(n)
i (θ) (9)

and, defining g(n)(λ) = n2G
(n)
�� (λ)− tr

(
G(n)(λ)

)
,

∆
(n)∗
f ;λ (θ) =

1√
n

n∑
i=1

ϕf

(
e
(n)
i (θ)

)(
G

(n)
i� (λ)−G

(n)
� (λ)

)
X(n)β

+
1√
n

n∑
i=1

ϕf

(
e
(n)
i (θ)

)
e
(n)
i (θ)

(
G

(n)
ii (λ)−

tr
(
G(n)(λ)

)
n

)

+
1√
n

n∑
i=1

n∑
j=1
j ̸=i

ϕf

(
e
(n)
i (θ)

)
e
(n)
j (θ)

(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)

+ 2f(0)
1√
n

n∑
i=1

s
(n)
i (θ)

(
G

(n)
� (λ)X(n)β + µf

g(n)(λ)

n

)
, (10)

whereas ∆̃
(n)∗
f (θ) =

(
∆̃

(n)∗
f ;β (θ)

∆̃
(n)∗
f ;λ (θ)

)
with

∆̃
(n)∗
f ;β (θ) =

1√
n

n∑
i=1

φf

(
R̃

(n)
i (θ)

)(
x
(n)
i − x(n)

)
+ 2f(0)x(n) 1√

n

(
N

(n)
+ (θ)−N

(n)
− (θ)

)
(11)

10Appendix A.2 presents the most important steps to prove Proposition 1.
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and

∆̃
(n)∗
f ;λ (θ) =

1√
n

n∑
i=1

φf

(
R̃

(n)
i (θ)

)(
G

(n)
i� (λ)−G

(n)
� (λ)

)
X(n)β

+
1√
n

n∑
i=1

φf

(
R̃

(n)
i (θ)

)
F−1

(
R̃

(n)
i (θ)

)(
G

(n)
ii (λ)−

tr
(
G(n)(λ)

)
n

)

+
1√
n

n∑
i=1

n∑
j=1
j ̸=i

φf

(
R̃

(n)
i (θ)

)
F−1

(
R̃

(n)
j (θ)

)(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)

+ 2f(0)
1√
n

(
N

(n)
+ (θ)−N

(n)
− (θ)

)(
G

(n)
� (λ)X(n)β + µf

g(n)(λ)

n

)
, (12)

where, as defined in Hallin et al. (2006), for i = 1, . . . , n,

R̃
(n)
i (θ) =I

[
s
(n)
i (θ) = −1

]{1

2

R
(n)
i (θ)

N
(n)
− (θ) + 1

}

+ I
[
s
(n)
i (θ) = +1

]{1

2
+

1

2

R
(n)
i (θ)− (n−N

(n)
+ (θ))

N
(n)
+ (θ) + 1

}
.

∆
(n)∗
f (θ) and ∆̃

(n)∗
f (θ) are two versions of the semiparametric (under P

(n)
f ;θ) central sequence for

θ in the semiparametric model E(n)
0 . From now on, we will focus our attention to the ranks-and-signs

version ∆̃
(n)∗
f (θ), because of its distribution freeness stated in Proposition 2.

Proposition 2. Under P
(n)
h;θ, as n→ ∞, for any h ∈ F0,

∆̃
(n)∗
f (θ)

L−→ N
(
0, I∗f (θ)

)
, (13)

where I∗f (θ) is the information matrix for θ, under P
(n)
f ;θ, in the semiparametric model E(n)

0 , that

is, I∗f (θ)
−1 coincides with the semiparametric efficiency bound for the estimation of θ, under P

(n)
f ;θ;

I∗f (θ) is given by

I∗f (θ) =

(
I∗f ;β(θ) I∗f ;β,λ(θ)(

I∗f ;β,λ(θ)
)T

I∗f ;λ(θ)

)
,

where

I∗f ;β(θ) = If lim
n→∞

{
1

n

n∑
i=1

(
x
(n)
i − x(n)

)(
x
(n)
i − x(n)

)T}
+ (2f(0))2 lim

n→∞

{
x(n)

(
x(n)

)T}
,

13



I∗f ;β,λ(θ) = If lim
n→∞

{
1

n

n∑
i=1

(
x
(n)
i − x(n)

)(
G

(n)
i� (λ)−G

(n)
� (λ)

)
X(n)β

}

+Kf lim
n→∞

{
1

n

n∑
i=1

(
x
(n)
i − x(n)

)(
G

(n)
ii (λ)−

tr
(
G(n)(λ)

)
n

)}

+ Ifµf lim
n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
x
(n)
i − x(n)

)(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)
+ (2f(0))2 lim

n→∞

{(
G

(n)
� (λ)X(n)β + µf

g(n)(λ)

n

)
x(n)

}
,
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and

I∗f ;λ(θ) = If lim
n→∞

{
1

n

n∑
i=1

[(
G

(n)
i� (λ)−G

(n)
� (λ)

)
X(n)β

]2}

+ (Qf − 1) lim
n→∞

 1

n

n∑
i=1

(
G

(n)
ii (λ)−

tr
(
G(n)(λ)

)
n

)2


+ Ifνf lim
n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)2


+ 2Kfµf lim

n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
ii (λ)−

tr
(
G(n)(λ)

)
n

)(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)
+ lim
n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)(
G

(n)
ji (λ)− g(n)(λ)

n(n− 1)

)
+ Ifµ2f lim

n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i,j

(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)(
G

(n)
ik (λ)− g(n)(λ)

n(n− 1)

)
+ 2Kf lim

n→∞

{
1

n

n∑
i=1

(
G

(n)
i� (λ)−G

(n)
� (λ)

)
X(n)β

(
G

(n)
ii (λ)−

tr
(
G(n)(λ)

)
n

)}

+ 2 Ifµf lim
n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
i� (λ)−G

(n)
� (λ)

)
X(n)β

(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)
+ (2f(0))2 lim

n→∞

[
G

(n)
� (λ)X(n)β + µf

g(n)(λ)

n

]2
,

with µf , νf , If , Kf , and Qf defined in Assumption 3.11

Note that, in accordance with the invariance properties of ranks and signs, the limiting distri-
bution (13) depends only on the reference density f , and not on the true density h.

11Appendix A.3 presents the main computation steps of I∗f (θ).
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3.5 Fully semiparametrically efficient estimation of θ in E (n)
0

It follows from Proposition 2 that the ranks-and-signs-based central sequence ∆̃
(n)∗
f (θ) allows to

construct inference procedures for θ that are semiparametrically efficient if the density function f
used to define the score function coincides with the true underlying error density. For instance, if

θ̃
(n)

is a
√
n-consistent estimator of θ, then the one-step estimator

θ̂
(n)∗
f = θ̃

(n)
+

1√
n

(
I∗f (θ̃

(n)
)
)−1

∆̃
(n)∗
f (θ̃

(n)
) (14)

is, under P
(n)
f ;θ, asymptotically normal with zero mean and covariance matrix

(
I∗f (θ)

)−1
and, conse-

quently, θ̂
(n)∗
f is an asymptotically efficient estimator of θ, under P

(n)
f ;θ, in the semiparametric model

E(n)
0 .

But our objective is to define a uniformly semiparametrically efficient estimator of θ in E(n)
0 , i.e.

an estimator that is semiparametrically efficient, regardless of the true error density. For this, we

need a fully semiparametric central sequence that is asymptotically equivalent to ∆̃
(n)∗
f (θ) under

P
(n)
f ;θ, but that no longer depends on the unknown density f .

A way to obtain a completely semiparametric central sequence ∆̃
(n)∗

(θ) consists in replacing

the density function f in ∆̃
(n)∗
f (θ) by a kernel estimate computed from the residuals e

(n)
i (θ̃

(n)
),

i = 1, . . . , n. Then, replacing f by its estimate in the central sequence and the information matrix
involved in (14), we define the one-step estimator

θ̂
(n)∗

= θ̃
(n)

+
1√
n

(
Î(n)∗(θ̃

(n)
)
)−1

∆̃
(n)∗

(θ̃
(n)

); (15)

for any f ∈ F0, θ̂
(n)∗

= θ̂
(n)∗
f + oP(1) under P

(n)
f ;θ, as n→ ∞, i.e., θ̂

(n)∗
is a fully semiparametrically

efficient estimator of θ in E(n)
0 .

As mentioned in the introduction, Robinson (2010) develops two adaptive estimators, based on
series approximations of the score function, designed to be efficient even when the distribution of
the error term is unknown. Several important differences exist between these adaptive estimators
and the approach proposed in this paper.

To start with, the first estimator (A) proposed by Robinson (2010) has been derived within the
framework of interaction matrices which satisfy conditions similar to those imposed by Lee (2002).
By contrast, the second estimator (B) requires that either the distribution of the error term or the
row-normalized interaction matrix be symmetric. The method proposed here merely requires the
density function to be strongly unimodal without other assumption on W than those described in
Assumption 1. Furthermore, Robinson (2010) assumes that the density function is differentiable
everywhere. In our approach, assumption 3 only requires the distribution to be differentiable in
quadratic mean (hence differentiable once almost everywhere).
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Finally, the series approximation of the score function necessitates choosing the function that
serves as the basis for the series, which Robinson (2010) limits to two alternatives. When the true
density distribution is not known, both the basis function and its power must be selected. Our
method for estimating the density function is based on a data-dependent variable bandwidth kernel
density, which does not require a specific parametrization of the scoring function.

4 Practical implementation

Implementation of the R&S approach we propose requires first to select a preliminary estimator.
Next, we have to estimate the unknown error density function f relying on the preliminary residuals
and compute the central sequence and information matrix to obtain a one-step efficient estimator.
Despite the complexity of the formulas presented in section 3, they are explicitly defined and the
integrals can be approximated numerically. In this section, we thus focus on the first two points
and then present a refinement procedure used in finite samples.

4.1 The preliminary estimator θ̃
(n)

of θ

The only condition imposed on the preliminary estimator of θ is to be
√
n-consistent. Therefore,

we start with the TSLS estimator of Kelejian & Prucha (1998), Bramoullé et al. (2009).12 We also
correct the preliminary estimated intercept to ensure that residuals have zero-median.

4.2 Data dependent variable-bandwidth kernel estimation of er-
ror’s density

We use a variable-bandwidth (Gaussian) kernel to estimate the density function of the error term.
When point concentration varies significantly across locations, as is the case for skewed and/or
heavy-tailed distributions, a fixed bandwidth estimator may be problematic as it could result in
excessive smoothing and loss of detail in highly populated areas and under-smoothing and excess
variability in regions with low point density.

The formula used for the variable-bandwidth used is bwi = bw×
{
Mgeom/f̂prel (ei)

}0.5
, where

Mgeom is the geometric mean of a preliminary fixed bandwidth (bw) density estimate f̂prel evaluated
at each point (see Abramson 1982, Van Kerm 2003). The bandwidth of the preliminary density

estimator is chosen according a rule of thumb due to Silverman, namely bw = 0.9min
(
σ̂, IQR1.349

)
n−

1
5

12We could also start from a GMM estimator (Lee 2007) or even from the QML estimator of Lee (2004)
but the initial gain in precision by relying on GMM or QML instead of TSLS does not have any effect on
our one-step estimator. Naturally, if no exogenous regressors are present, TSLS cannot be used since there
is no internal instrument available and QML or GMM should be considered as a starting point.
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where σ̂ corresponds to the estimated standard deviation and IQR is the fitted interquartile range.13

4.3 Iterative procedure

To improve the one-step estimator θ̂
(n)∗

presented in (15), we propose a refinement procedure. The

residuals e
(n)
i (θ̂

(n)∗
) (i = 1, . . . , n) are computed and used to estimate once again the underlying

density function f and to evaluate the log-likelihood function in (8) at the parameter value θ̂
(n)∗

.

Then, we update θ̂
(n)∗

by applying (15) in which θ̂
(n)∗

acts as the preliminary estimator, and
we evaluate (8) for this new estimate of θ. This iterative process stops (usually very fast) when
the log-likelihood value stops increasing.

5 Simulations

The experimental design considered is

yi = β0 + β1xi + λWi�y + ε
(n)
i , i = 1, . . . , n (16)

where the xi’s are generated once (and kept constant over all the simulations) from a standard
normal. We also have that β0 = β1 = 1, and λ spans values from −0.7 to 0.7, increasing in
steps of 0.2, and also includes the value 0. We consider two different connection patterns between
observations, both based on random coordinates from two U(0, 10) distributions (also kept constant
across the simulations). The first interaction scheme is binary and considers the 10 nearest neighbors
constructed from Euclidian distance. The second connectivity scheme is constructed from the
inverse distance truncated to the 15 nearest data points. Finally, these 2 matrices have been
normalized using the spectral radius norm of Kelejian & Prucha (2010).

Six alternative probability distributions are considered for the error term which could be en-
countered in practice:

(a) Standard normal distribution;

(b) Student distribution with two degrees of freedom;

(c) Median-centered Lognormal distribution, with µ = 0 and σ2 = 1;

(d) Mixed Distribution of a (zero median) shifted Beta(2,2) and a Student distribution with two
degrees of freedom;

(e) Standard Laplace distribution;

(f) Bimodal mixture normal f(e) = 0.5√
2π

exp
(
− (e−3)2

2

)
+ 0.5√

2π
exp

(
− (e+3)2

2

)
.

13In Silverman (1986, p.48), IQR is divided by 1.34 instead of 1.349.
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Figure 1: Distributions used in simulations

The last distribution, also used in Robinson (2010), is considered to see how the R&S estimator
behaves when the strong unimodality assumption is severely violated. Figure 1 presents the shape
of all considered distributions with the normal distribution reproduced in the dashed line to serve
as a benchmark.

In total, 108 alternative scenarios are considered, and each of them has been replicated 1000
times. The simulation setup is run for 2 sample sizes: n = 300 and n = 900.14

For each setup, we assess the performance of λ̂ and β̂1 for five alternative estimators: TSLS,
QML, efficient GMM, ADP, and the R&S semiparametric estimator proposed here.15 The summary
measures considered to assess the performances of estimators are the median difference of the
estimated coefficients to the true values as a measure of their bias and the interquartile range
(divided by 1.349 to guarantee Gaussian consistency towards the standard deviation) of the point
estimates as a measure of dispersion.

Only simulations related to the largest sample size (n = 900) and the inverse distance truncated
to the 15 closest data points connectivity matrix are presented in the core of the paper.16 As far
as the constant term is concerned, since it cannot be compared across estimation methods, we do
not present the graphs related to the simulations here. However, generally speaking, its bias and

14All simulations have been run with Matlab R2019a on the calculation center of the Université de Lille
(Mésocentre de Calcul Scientifique Intensif de l’Université de Lille). Moreover, the proposed R&S estimator
has been programmed in Stata, Matlab, and R softwares.

15For the normal distribution setup, we use the ML estimator of Lee (2004).
16All remaining simulations are presented in a supplementary file, which also contains, for the R&S estima-

tor, the comparison of the dispersion over repeated samples (computed as the interquartile range normalized
by 1.349) of the point estimates of the parameters with the median of the fitted standard errors, to evaluate
the bias of the standard errors.
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Figure 2: Bias of λ̂, n = 900 and truncated inverse distance matrix

dispersion over repeated samples are small for the R&S (except for the case of the normal bimodal
distribution which is not surprising as the basic assumptions of the procedure are not met).

The TSLS estimator is computed using the 2 first-order neighborhood’s characteristics as in-
struments for the endogenous effects (Kelejian & Prucha 1998, Bramoullé et al. 2009). The efficient
GMM estimator of Liu et al. (2010) is obtained by an iterated procedure used to refine the estima-
tion of the covariance matrix of moment conditions. Computing the ADP estimator of Robinson
(2010) requires selecting the series function and power used to approximate the scoring function.
Relying on the Monte Carlo estimation results presented in Robinson (2010) we have decided to
use expression (2.29) and power L = 4 for the series function, specifically a polynomial of fourth
degree. We also have decided to focus on estimator A rather than B as, according to Robinson
(2010, pp. 13–14), the latter does not show a clear superiority with respect to the former.

Finally, the TSLS approach presented above serves as preliminary estimator for both the ADP
and the R&S estimators.

5.1 Bias of the coefficients estimators

The bias of the R&S estimator of λ is negligible for all setups and is less sensitive to the values of λ
than the other estimators (see Figure 2). The bias in the estimation of β1 turns out to be minimal
for all the estimators and all the setups, whatever the value of λ (see Figure 3).
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Figure 3: Bias of β̂1, n = 900 and truncated inverse distance matrix

5.2 Relative dispersion

Figures 4 and 5 compare the dispersion over repeated samples of the point estimates of the param-
eters λ and β1, using the five estimation method presented above.

The R&S estimator of λ is the one with the lowest dispersion in all cases except, as anticipated,
when the errors are normal. This result comes from the fact that the dispersion of a semipara-
metrically efficient estimator will generally be higher than for a parametric efficient one (under the
true distribution). Nevertheless, we do not observe a large difference between ML (and GMM) and
the R&S estimator. The ADP performs worse, but this is likely due to the choice of a fourth-order
polynomial (while the normal score is a linear polynomial).

The dispersion of the R&S estimator of λ is much less sensitive to the true value of this parameter
than the other estimators. We also note that the estimator with the second lowest dispersion varies
depending on the error distribution. For instance, the ADP estimator is the second most efficient
for the case of mixtures distributions while it is dominated by QML and GMM when the error term
is distributed according to the Laplace distribution.

Finally, the R&S estimator is the most efficient for the bimodal mixture of normal distribu-
tions, even if this distribution does not satisfy the strong unimodality assumption. This finding is
interesting as it indicates some robustness of the proposed procedure with respect to the violation
of its core assumption.

The ADP estimator for this distribution exhibits good performance, even if its dispersion is on
average (over the values of λ) 61% larger than for the proposed R&S estimator.

For parameter β1, the dispersion is lowest for R&S in all cases with non-normal errors.
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Figure 4: Dispersion of λ̂, n = 900 and truncated inverse distance matrix

Figure 5: Dispersion of β̂1, n = 900 and truncated inverse distance matrix
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6 Illustration

To illustrate the practical utility of the R&S estimation framework, we rerun a trade regression,
initially developed by Behrens et al. (2012) (BEK hereafter). These authors theoretically derive a
trade model using spatial econometrics techniques to assess the effect of the Canada-U.S. border on
trade flows. Their sample includes 30 US states and 10 Canadian regions, which leads to a sample
of size n = 1600. In one of their intermediary results (Table III, p.788), they report the estimation
of a SAR specification, shown in (17):

ln(Zij) = β0 + β1dij + β2 ln(wi) + β3bij + λ

n∑
k=1
k ̸=i

Lk
L

ln(Zkj) + εij , (17)

where Zij is the GDP-standardized manufacturing exports from region i to j, dij is the great
circle distance (in kilometers) between regional and provincial capitals. The internal distance is
measured as one-fourth the distance of a region’s capital from the nearest capital of another region
(see Anderson & van Winkoop 2003).17 The regression also includes wi, which measures the average
hourly manufacturing wage in region i and the dummy variable bij , which takes a value of 1 if region
i belongs to Canada and j is part of the U.S. or vice-versa and 0 otherwise. 18 Finally, the exports
from i to j depend on the exports of other regions k to region j, where the connectivity between
k and j is constructed from the share of population in region k over the total sample (Lk/L),
and further normalized by its spectral radius. Their characterization of the interaction scheme is
directly derived from the trade model and thus avoids the complex question of selecting the relevant
neighborhood for each unit.

Our objective here is to compare the estimation results of the SAR model obtained by QML
under the normality assumption as estimated by BEK to the R&S estimator. We also provide
comparison with the GMM estimator of Liu et al. (2010) and the A adaptive estimator of Robinson
(2010), which are potentially more efficient than QML.

The first column in Table 1 presents the estimation results reported in BEK, based on QML
under normality. We observe that the interaction effect λ is not statistically different from 0.
In Figure 6, we show the qqplot of the residuals based on the QML estimation. The tails of
the empirical distribution differ greatly from those of a Gaussian distribution, indicating that a
substantial gain in efficiency can be achieved. Columns 2 and 3 of Table 1 present estimation
results obtained by efficient GMM and by ADP. GMM is slightly more precise than QML, even
though qualitatively similar. We also note that λ becomes significant for ADP. The last column of
Table 1 reports the results of the R&S estimator.

17Behrens et al. (2012) consider also alternative measures of internal distances as robustness analysis.
However, in this illustration, we focus on the first definition but all the results hold for the 2 other definitions.

18To account for zero flow observations in their logarithmic bilateral export model, BEK add value one
to these flows and introduce a dummy variable to identify the original zero flows among the regressors (not
reported in the model specification), yielding a total of five regression parameters and a constant to estimate.
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Table 1: Comparison of estimation results
Dependent variable: ln(Zij)
QML GMM ADP R&S

Constant -13.890 -12.274 -12.230
(0.713) (0.691) - (0.473)
[-19.496] [-17.767] [-25.871]

dij -1.223 -1.280 -1.209 -1.208
(0.034) (0.033) (0.030) (0.024)
[-35.984] [-39.278] [-40.508] [-50.780]

ln(wi) -1.173 -1.759 -1.203 -1.263
(0.180) (0.170) (0.155) (0.124)
[-6.631] [-10.370] [-7.759] [-10.210]

bij -1.052 -0.804 -1.074 -1.197
(0.066) (0.063) (0.058) (0.046)
[-15.961] [-12.726] [-18.647] [-25.930]

λ 0.030 0.045 0.051 0.108
(0.030) (0.029) (0.023) (0.019)
[1.012] [1.577] [2.164] [5.697]

Rel. eff 1 1.084 1.358 2.107
Notes: standard errors between parentheses and t-stats
between square brackets. Rel. eff. computes the relative
efficiency of each estimator compared to QML.

The R&S point estimate of the spillover effect is significantly greater compared to the original
paper (0.108 vs 0.03), while its standard error decreases substantially (0.019 vs 0.03). This suggests
that the absence of significant spillover effect in the original results might come from the QML
estimation method inefficiency. We also note that the standard errors of all the other regression
coefficients are much smaller as well when using the R&S estimator.

Finally, the bottom panel of Table 1 presents the relative efficiency of each of the four estimation
methods with respect to QML. This measure of relative efficiency is computed as (see Serfling 2011):

Rel. effq =

det
(
I(θ)−1

QML

)
det
(
I(θ)−1

q

)
1/Kcomp

, q = QML,GMM,ADP,R&S, Kcomp = 5.

with I(θ)−1
q being the asymptotic covariance matrix of the qth estimator and Kcomp the number

of estimates to be compared. We do not include the constant here as it is viewed as a nuisance
parameter by Robinson (2010).

In this empirical application, GMM is slightly more efficient than QML (around 8%), while
ADP improves the efficiency by around 36%. The R&S estimator is approximately two times more
efficient than QML.
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Figure 6: QQ plot of the structural residuals

7 Conclusions

Due to its inherent simultaneity, the linear model with spillovers cannot generally be estimated
by ordinary least squares and calls for more advanced procedures such as two-stage least squares,
generalized method of moments, quasi-maximum likelihood, or adaptive estimation.

When the error distribution is known (and possesses the appropriate differentiability proper-
ties), the maximum likelihood framework provides the most efficient estimator. However, if the
distribution of the errors is unknown, maximum likelihood estimation becomes infeasible. In such
cases, the quasi-maximum likelihood method under normal errors still produces consistent estima-
tors, albeit not efficient.

In this paper, we develop a new estimator based on the concept of Local Asymptotic Normality
and previous research by Hallin & Werker (2003) and Hallin et al. (2006, 2008). This estimator,
constructed from the ranks and signs of the residuals of a preliminary

√
n-consistent estimator, is

asymptotically semiparametrically efficient. Monte Carlo experiments show that it performs gener-
ally better than the other methods considered, once the assumption of a normal error distribution
is relaxed.

When applied to the trade regression model developed by Behrens et al. (2012), this new
approach produces more accurate point estimates than those obtained in the original paper, and
provides a statistically significant spillover effect that was not identified in the original paper, based
on quasi-maximum likelihood.

In future research, we plan to relax the i.i.d errors assumption and propose R&S estimators
addressing heteroskedasticity and/or clustering.
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beke & J. Fine, eds, ‘Inférence non paramétrique fondée sur les Rangs’, Editions del’Université’
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A Proofs

A.1 Parametric Fisher information matrix for θ under P
(n)
f ;θ

As shown in Section 3.3, the central sequence for θ in the parametric submodel E(n)
0;f is

∆
(n)
f (θ) =

(
∆

(n)
f ;β(θ)

∆
(n)
f ;λ(θ)

)
,

with

∆
(n)
f ;β(θ) =

1√
n

n∑
i=1

ϕf

(
e
(n)
i (θ)

)
x
(n)
i

and

∆
(n)
f ;λ(θ) = − 1√

n
tr
(
G(n)(λ)

)
+

1√
n

n∑
i=1

ϕf

(
e
(n)
i (θ)

)
W

(n)
i� y(n).

Since, in view of (5),

W
(n)
i� y(n) = G

(n)
i� (λ)

(
X(n)β + e(n)(θ)

)
= G

(n)
i� (λ)X(n)β +

n∑
j=1

G
(n)
ij (λ)e

(n)
j (θ),

we have that
∆

(n)
f ;λ(θ) = L

(n)
1;f (θ) + L

(n)
2;f (θ) + L

(n)
3;f (θ) + L

(n)
4;f (θ),
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with

L
(n)
1;f (θ) =

1√
n

n∑
i=1

ϕf

(
e
(n)
i (θ)

)
G

(n)
i� (λ)X(n)β,

L
(n)
2;f (θ) =

1√
n

n∑
i=1

ϕf

(
e
(n)
i (θ)

)
e
(n)
i (θ)G

(n)
ii (λ),

L
(n)
3;f (θ) =

1√
n

n∑
i=1

n∑
j=1
j ̸=i

ϕf

(
e
(n)
i (θ)

)
e
(n)
j (θ)G

(n)
ij (λ),

L
(n)
4;f (θ) = − 1√

n
tr
(
G(n)(λ)

)
.

Under P
(n)
f ;θ , the error terms e

(n)
1 (θ), . . . , e

(n)
n (θ) are i.i.d. with density function f and we have, for

all i = 1, . . . , n:

E
[
e
(n)
i (θ)

]
=

∫ ∞

−∞
ef(e)de

def
= µf ;

E
[(
e
(n)
i (θ)

)2]
=

∫ ∞

−∞
e2f(e)de

def
= νf ;

E
[
ϕf

(
e
(n)
i (θ)

)]
=

∫ ∞

−∞
ϕf (e)f(e)de = −

∫ ∞

−∞
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E
[
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)
e
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]
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−∞
ϕf (e)ef(e)de = −

∫ ∞

−∞
f ′(e)ede
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E
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E
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[
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i (θ)

)2]
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−∞
ϕ2f (e)e

2f(e)de
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= Qf .

It follows that, under P
(n)
f ;θ ,

E
[
∆

(n)
f ;β(θ)

]
= 0

29



and

E
[
∆

(n)
f ;λ(θ)

]
= E

[
L
(n)
1;f (θ)

]
+ E

[
L
(n)
2;f (θ)

]
+ E

[
L
(n)
3;f (θ)

]
+ E

[
L
(n)
4;f (θ)

]
= 0 +

1√
n

n∑
i=1

G
(n)
ii (λ) + 0− 1√

n
tr
(
G(n)(λ)

)
=

1√
n
tr
(
G(n)(λ)

)
− 1√

n
tr
(
G(n)(λ)

)
= 0.

Moreover, under P
(n)
f ;θ ,

E
[
∆

(n)
f ;β(θ)

(
∆

(n)
f ;β(θ)

)T]
= If

{
1

n

n∑
i=1

x
(n)
i (x

(n)
i )T

}
and

E
[
∆

(n)
f ;β(θ)∆

(n)
f ;λ(θ)

]
= E

[
∆

(n)
f ;β(θ)L

(n)
1;f (θ)

]
+ E

[
∆

(n)
f ;β(θ)L

(n)
2;f (θ)

]
+ E

[
∆

(n)
f ;β(θ)L

(n)
3;f (θ)

]
+ E

[
∆

(n)
f ;β(θ)L

(n)
4;f (θ)

]
,

where

E
[
∆

(n)
f ;β(θ)L

(n)
1;f (θ)

]
= If

{
1

n

n∑
i=1

x
(n)
i

(
G

(n)
i� (λ)X(n)β

)}
,

E
[
∆

(n)
f ;β(θ)L

(n)
2;f (θ)

]
= Kf

{
1

n

n∑
i=1

x
(n)
i G

(n)
ii (λ)

}
,

E
[
∆

(n)
f ;β(θ)L

(n)
3;f (θ)

]
= Ifµf


1

n

n∑
i=1

n∑
j=1
j ̸=i

x
(n)
i G

(n)
ij (λ)

 ,

E
[
∆

(n)
f ;β(θ)L

(n)
4;f (θ)

]
= 0.

Finally, under P
(n)
f ;θ ,

E
[(

∆
(n)
f ;λ(θ)

)2]
= E

[(
L
(n)
1;f (θ)

)2]
+ E

[(
L
(n)
2;f (θ)

)2]
+ E

[(
L
(n)
3;f (θ)

)2]
+ E

[(
L
(n)
4;f (θ)

)2]
+ 2E

[
L
(n)
1;f (θ)L

(n)
2;f (θ)

]
+ 2E

[
L
(n)
1;f (θ)L

(n)
3;f (θ)

]
+ 2E

[
L
(n)
1;f (θ)L

(n)
4;f (θ)

]
+ 2E

[
L
(n)
2;f (θ)L

(n)
3;f (θ)

]
+ 2E

[
L
(n)
2;f (θ)L

(n)
4;f (θ)

]
+ 2E

[
L
(n)
3;f (θ)L

(n)
4;f (θ)

]
,

30



where

E
[(
L
(n)
1;f (θ)

)2]
= If

{
1

n

n∑
i=1

(
G

(n)
i� (λ)X(n)β

)2}
,

E
[(
L
(n)
2;f (θ)

)2]
= (Qf − 1)

{
1

n

n∑
i=1

(
G

(n)
ii (λ)

)2}
+

(
tr
(
G(n)(λ)

))2
n

,

E
[(
L
(n)
3;f (θ)

)2]
= Ifνf


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
ij (λ)

)2+
1

n

n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ij (λ)G

(n)
ji (λ)

+ Ifµ2f


1

n

n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i,j

G
(n)
ij (λ)G

(n)
ik (λ)

 ,

E
[(
L
(n)
4;f (θ)

)2]
=

(
tr
(
G(n)(λ)

))2
n

,

E
[
L
(n)
1;f (θ)L

(n)
2;f (θ)

]
= Kf

{
1

n

n∑
i=1

(
G

(n)
i� (λ)X(n)β

)
G

(n)
ii (λ)

}
,

E
[
L
(n)
1;f (θ)L

(n)
3;f (θ)

]
= Ifµf


1

n

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
i� (λ)X(n)β

)
G

(n)
ij (λ)

 ,

E
[
L
(n)
2;f (θ)L

(n)
3;f (θ)

]
= Kfµf lim

n→∞


1

n

n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ii (λ)G

(n)
ij (λ)

 ,

E
[
L
(n)
1;f (θ)L

(n)
4;f (θ)

]
= E

[
L
(n)
3;f (θ)L

(n)
4;f (θ)

]
= 0,

and

E
[
L
(n)
2;f (θ)L

(n)
4;f (θ)

]
= −

(
tr
(
G(n)(λ)

))2
n

.

The expression for the (parametric) Fisher information matrix If (θ) follows directly from the

above results.
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A.2 Semiparametric central sequence for θ under P
(n)
f ;θ

Throughout this section, to prevent the notations from becoming overly complex , we simply write
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[
E
[
∆

(n)
f ;β

∣∣∣N(n),R(n)
]]

=
1√
n

n∑
i=1

φf

(
F (e

(n)
i )
)(

x
(n)
i − x(n)

)
+
√
nx(n)

{
2
N

(n)
−
n

µ−φf
+ 2

N
(n)
+

n
µ+φf

− µφf

}
+ oP(1),

with

E
[
E
[
∆

(n)
f ;β

∣∣∣N(n),R(n)
]]

= E
[
∆

(n)
f ;β

]
= 0,

µφf
=

∫ 1

0
φf (u)du =

∫ 1

0
ϕf
(
F−1(u)

)
du =

∫ ∞

−∞
ϕf (e)f(e)de = 0,

µ−φf
=

∫ 1/2

0
φf (u)du =

∫ 0

−∞
ϕf (e)f(e)de = −

∫ 0

−∞
f ′(e)de

= − [f(e)]0−∞ = −f(0),

µ+φf
=

∫ 1

1/2
φf (u)du =

∫ ∞

0
ϕf (e)f(e)de = −

∫ ∞

0
f ′(e)de

= − [f(e)]∞0 = f(0).
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Consequently, under P
(n)
f ;θ , as n→ ∞,

E
[
∆

(n)
f ;β

∣∣∣N(n),R(n)
]

=
1√
n

n∑
i=1

φf

(
F (e

(n)
i )
)(

x
(n)
i − x(n)

)
+ 2f(0)x(n) 1√

n

(
N

(n)
+ −N

(n)
−

)
+ oP(1)

=
1√
n

n∑
i=1

ϕf

(
e
(n)
i

)(
x
(n)
i − x(n)

)
+ 2f(0)x(n) 1√

n

n∑
i=1

s
(n)
i + oP(1)

= ∆
(n)∗
f ;β + oP(1).

Moreover, Lemma 3.1 — more precisely, relation (3.7) — of Hallin et al. (2006) implies that, under

P
(n)
f ;θ , as n→ ∞,

1√
n

n∑
i=1

ϕf

(
e
(n)
i

)(
x
(n)
i − x(n)

)
=

1√
n

n∑
i=1

φf

(
F (e

(n)
i )
)(

x
(n)
i − x(n)

)
=

1√
n

n∑
i=1

φf

(
R̃

(n)
i

)(
x
(n)
i − x(n)

)
+ oP(1),

where

R̃
(n)
i = I

[
s
(n)
i = −1

]{1

2

R
(n)
i

N
(n)
− + 1

}
+ I
[
s
(n)
i = +1

]{1

2
+

1

2

R
(n)
i − (n−N

(n)
+ )

N
(n)
+ + 1

}
.

Hence,

E
[
∆

(n)
f ;β

∣∣∣N(n),R(n)
]
= ∆̃

(n)∗
f ;β + oP(1),

under P
(n)
f ;θ , as n→ ∞.

A.2.2 Component associated with λ

Consider now

∆
(n)
f ;λ =

1√
n

n∑
i=1

ϕf

(
e
(n)
i

)
W

(n)
i� y(n) − 1√

n
tr
(
G(n)

)
= L

(n)
1;f + L

(n)
2;f + L

(n)
3;f −

1√
n
tr
(
G(n)

)
,
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with

L
(n)
1;f =

1√
n

n∑
i=1

ϕf

(
e
(n)
i

)
G

(n)
i� X(n)β,

L
(n)
2;f =

1√
n

n∑
i=1

ϕf

(
e
(n)
i

)
e
(n)
i G

(n)
ii ,

L
(n)
3;f =

1√
n

n∑
i=1

n∑
j=1
j ̸=i

ϕf

(
e
(n)
i

)
e
(n)
j G

(n)
ij .

(i) Following similar developments of Section A.2.1, we get that, under P
(n)
f ;θ , as n→ ∞,

E
[
L
(n)
1;f

∣∣∣N(n),R(n)
]

=
1√
n

n∑
i=1

ϕf

(
e
(n)
i

)(
G

(n)
i� −G

(n)
�

)
X(n)β + 2f(0)G

(n)
� X(n)β

1√
n

n∑
i=1

s
(n)
i + oP(1) (18)

=
1√
n

n∑
i=1

φf

(
R̃

(n)
i

)(
G

(n)
i� −G

(n)
�

)
X(n)β + 2f(0)G

(n)
� X(n)β

1√
n

(
N

(n)
+ −N

(n)
−

)
+ oP(1), (19)

where G
(n)
� = 1

n

∑n
i=1G

(n)
i� .

(ii) Applying Proposition 3.2 of Hallin et al. (2006) once again, we have that, under P
(n)
f ;θ , as

n→ ∞,

E
[
L
(n)
2;f

∣∣∣N(n),R(n)
]
− E

[
E
[
L
(n)
2;f

∣∣∣N(n),R(n)
]]

=
1√
n

n∑
i=1

φf

(
F (e

(n)
i )
)
F−1

(
F (e

(n)
i )
)(

G
(n)
ii −

tr
(
G(n)

)
n

)

+
tr
(
G(n)

)
√
n

{
2
N

(n)
−
n

µ−ψf
+ 2

N
(n)
+

n
µ+ψf

− µψf

}
+ oP(1),
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with

E
[
E
[
L
(n)
2;f

∣∣∣N(n),R(n)
]]

= E
[
L
(n)
2;f

]
=

tr
(
G(n)

)
√
n

,

ψf (u) = φf (u)F
−1(u),

µψf
=

∫ 1

0
ψf (u)du =

∫ 1

0
φf (u)F

−1(u)du =

∫ 1

0
ϕf
(
F−1(u)

)
F−1(u)du

=

∫ ∞

−∞
ϕf (e)ef(e)de = 1,

µ−ψf
=

∫ 1/2

0
ψf (u)du =

∫ 0

−∞
ϕf (e)ef(e)de = −

∫ 0

−∞
f ′(e)ede

= − [f(e)e]0−∞ +

∫ 0

−∞
f(e)de = 0 +

1

2
=

1

2
,

µ+ψf
=

∫ 1

1/2
ψf (u)du =

∫ ∞

0
ϕf (e)ef(e)de = −

∫ ∞

0
f ′(e)ede

= − [f(e)e]∞0 +

∫ ∞

0
f(e)de = 0 +

1

2
=

1

2
.

Hence, under P
(n)
f ;θ , as n→ ∞,

E
[
L
(n)
2;f

∣∣∣N(n),R(n)
]
=

tr
(
G(n)

)
√
n

+
1√
n

n∑
i=1

φf

(
F (e

(n)
i )
)
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(
F (e

(n)
i )
)(

G
(n)
ii −

tr
(
G(n)

)
n

)

+
tr
(
G(n)

)
√
n

{
N

(n)
−
n

+
N

(n)
+

n
− 1

}
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Since, under P
(n)
f ;θ , N

(n)
− +N

(n)
+

a.s.
= n, we have that

E
[
L
(n)
2;f

∣∣∣N(n),R(n)
]

=
tr
(
G(n)

)
√
n

+
1√
n

n∑
i=1

φf

(
F (e

(n)
i )
)
F−1

(
F (e

(n)
i )
)(

G
(n)
ii −

tr
(
G(n)

)
n

)
+ oP(1). (20)

Applying again result (3.7) of Hallin et al. (2006), we write that, under P
(n)
f ;θ , as n→ ∞,

E
[
L
(n)
2;f

∣∣∣N(n),R(n)
]

=
tr
(
G(n)

)
√
n

+
1√
n

n∑
i=1

φf

(
R̃

(n)
i )
)
F−1

(
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(n)
i

)(
G

(n)
ii −

tr
(
G(n)

)
n

)
+ oP(1). (21)
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(iii) Let us now consider the third term of ∆
(n)
f ;λ:

L
(n)
3;f =

1√
n

n∑
i=1

n∑
j=1
j ̸=i

ϕf

(
e
(n)
i

)
e
(n)
j G

(n)
ij

=
1√
n

n∑
i=1

n∑
j=1
j ̸=i

φf

(
F (e

(n)
i )
)
F−1

(
F (e

(n)
j )
)
G

(n)
ij .

Define the linear “serial” sign-and-rank statistics of order 2, based on the so-called exact and
approximate serial score functions,

S
(n)
exact = E

[
L
(n)
3;f

∣∣∣N(n),R(n)
]

=
1√
n

n∑
i=1

n∑
j=1
j ̸=i

E
[
ϕf

(
e
(n)
i

)
e
(n)
j

∣∣∣N(n),R(n)
]
G

(n)
ij

and

S(n)
appr =

1√
n

n∑
i=1

n∑
j=1
j ̸=i

φf

(
R̃

(n)
i

)
F−1

(
R̃

(n)
j

)
G

(n)
ij .

Under a straightforward generalisation of Lemma 4.1 of Hallin et al. (2006), we have that, under

P
(n)
f ;θ , as n→ ∞,

S
(n)
exact = L

(n)
3;f − E

[
L
(n)
3;f

∣∣∣e(n)(�)

]
+ E

[
S
(n)
exact

∣∣∣N(n)
]
+ oP(1) (22)

= S(n)
appr − E

[
S(n)
appr

∣∣∣N(n)
]
+ E

[
S
(n)
exact

∣∣∣N(n)
]
+ oP(1), (23)

where e
(n)
(�) =

(
e
(n)
(1) , . . . , e

(n)
(n)

)T
is the vector of order statistics associated with e(n).

Note first that

E
[
L
(n)
3;f

∣∣∣e(n)(�)

]
=

1√
n

n∑
i=1

n∑
j=1
j ̸=i

E
[
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(
e
(n)
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e
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G
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=

 1√
n

n∑
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G
(n)
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
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(
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e
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n

n∑
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(
e
(n)
i

)
e
(n)
j

 .

36



Since
n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ij =

n∑
i=1

n∑
j=1

G
(n)
ij −

n∑
i=1

G
(n)
ii = n2G�� − tr

(
G(n)

)
def
= g(n),

we have that, under P
(n)
f ;θ ,

L
(n)
3;f − E

[
L
(n)
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]
=
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n∑
j=1
j ̸=i

ϕf

(
e
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i

)
e
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j

(
G
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n(n− 1)

)
. (24)

Moreover, under P
(n)
f ;θ ,

E
[
S
(n)
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∣∣∣N(n)
]
= E

[
E
[
L
(n)
3;f
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]
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[
L
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= E
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E
[
L
(n)
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]

= E
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n

n∑
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E
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with

E
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(
e
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i

)
e
(n)
j

∣∣∣s(n)i , s
(n)
j

]
= I

[
s
(n)
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(n)
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] ∫ 0
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s
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s
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0
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Since
∫ 0
−∞ ϕf (e)2f(e)de = −2f(0) and

∫∞
0 ϕf (e)2f(e)de = 2f(0), we have that
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i
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e
(n)
j
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and, consequently,

E
[
S
(n)
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∣∣∣N(n)
]
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n

√
n

(
N

(n)
+ N

(n)
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But
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and, similarly,
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Hence,
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Combining (24) and (25), equation (22) gives that, under P
(n)
f ;θ , as n→ ∞,

E
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. We have
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For i ̸= j,
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2

ℓ

N
(n)
+ + 1

 .

Since

P
[
s
(n)
i = −1, s

(n)
j = −1

∣∣∣N(n)
]
=
N

(n)
− (N

(n)
− − 1)

n(n− 1)
,

P
[
s
(n)
i = −1, s

(n)
j = +1

∣∣∣N(n)
]
= P

[
s
(n)
i = +1, s

(n)
j = −1

∣∣∣N(n)
]
=
N

(n)
− N

(n)
+

n(n− 1)
,

and

P
[
s
(n)
i = +1, s

(n)
j = +1

∣∣∣N(n)
]
=
N

(n)
+ (N

(n)
+ − 1)

n(n− 1)
,
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we have, for i ̸= j,

E
[
E
[
φf

(
R̃

(n)
i

)
F−1

(
R̃

(n)
j

) ∣∣∣s(n)
] ∣∣∣N(n)

]

=
1

n(n− 1)

I [N(n)
− ≥ 2

]N
(n)
−∑

k=1

N
(n)
−∑

ℓ=1
ℓ̸=k

φf

1

2

k

N
(n)
− + 1

F−1

1

2

ℓ

N
(n)
− + 1



+ I
[
N

(n)
− ≥ 1, N

(n)
+ ≥ 1

]N
(n)
−∑

k=1

N
(n)
+∑

ℓ=1

φf

1

2

k

N
(n)
− + 1

F−1

1

2
+

1

2

ℓ

N
(n)
+ + 1



+ I
[
N

(n)
− ≥ 1, N

(n)
+ ≥ 1

]N
(n)
+∑

k=1

N
(n)
−∑

ℓ=1

φf

1

2
+

1

2

k

N
(n)
+ + 1

F−1

1

2

ℓ

N
(n)
− + 1



+I
[
N

(n)
+ ≥ 2

]N
(n)
+∑

k=1

N
(n)
+∑

ℓ=1
ℓ ̸=k

φf

1

2
+

1

2

k

N
(n)
+ + 1

F−1

1

2
+

1

2

ℓ

N
(n)
+ + 1




=
1

n(n− 1)

n∑
k=1

n∑
ℓ=1
ℓ̸=k

φf

(
R̃

(n)
k

)
F−1

(
R̃

(n)
ℓ

)
.

So,

E
[
S(n)
appr

∣∣∣N(n)
]
=
g(n)√
n

1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

φf

(
R̃

(n)
i

)
F−1

(
R̃

(n)
j

)
. (27)

In conclusion, using (23), (27), and (25), we derive that, under P
(n)
f ;θ , as n→ ∞,

E
[
L
(n)
3;f

∣∣∣N(n),R(n)
]
=

1√
n

n∑
i=1

n∑
j=1
j ̸=i

φf

(
R̃

(n)
i

)
F−1

(
R̃

(n)
j

)(
G

(n)
ij − g(n)

n(n− 1)

)

+ 2f(0)
1√
n

(
N

(n)
+ −N

(n)
−

)
µf
g(n)

n
+ oP(1). (28)

(iv) Now, from (18), (20), and (26) we may conclude that, under P
(n)
f ;θ , as n→ ∞,

E
[
∆

(n)
f ;λ

∣∣∣N(n),R(n)
]
= ∆

(n)∗
f ;λ + oP(1),

with ∆
(n)∗
f ;λ given by (10). Similarly, we may conclude from (19), (21), and (28) that, under P

(n)
f ;θ ,

as n→ ∞,

E
[
∆

(n)
f ;λ

∣∣∣N(n),R(n)
]
= ∆̃

(n)∗
f ;λ + oP(1),

with ∆̃
(n)∗
f ;λ given by (12).
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A.3 Semiparametric Fisher information matrix for θ under P
(n)
f ;θ

Consider the central sequence ∆̃
(n)∗
f (θ) defined in Proposition 1. Note first that, under P

(n)
h;θ , as

n→ ∞,

∆̃
(n)∗
f (θ) = ∆

(n)∗
f,h (θ) + oP(1),

where

∆
(n)∗
f,h (θ) =

(
∆

(n)∗
f,h;β(θ)

∆
(n)∗
f,h;λ(θ)

)
with, for H being the distribution function associated with density function h,

∆
(n)∗
f,h;β(θ) = B

(n)∗
1;f,h(θ) +B

(n)∗
2;f (θ), (29)

where

B
(n)∗
1;f,h(θ) =

1√
n

n∑
i=1

φf

(
H(e

(n)
i (θ))

)(
x
(n)
i − x(n)

)
,

B
(n)∗
2;f (θ) = 2f(0)x(n) 1√

n

n∑
i=1

s
(n)
i (θ),

and
∆

(n)∗
f,h;λ(θ) = L

(n)∗
1;f,h(θ) + L

(n)∗
2;f,h(θ) + L

(n)∗
3;f,h(θ) + L

(n)∗
4;f (θ), (30)

where

L
(n)∗
1;f,h(θ) =

1√
n

n∑
i=1

φf

(
H(e

(n)
i (θ))

)(
G

(n)
i� (λ)−G

(n)
� (λ)

)
X(n)β,

L
(n)∗
2;f,h(θ) =

1√
n

n∑
i=1

φf

(
H(e

(n)
i (θ))

)
F−1

(
H(e

(n)
i (θ))

)(
G

(n)
ii (λ)−

tr
(
G(n)(λ)

)
n

)
,

L
(n)∗
3;f,h(θ) =

1√
n

n∑
i=1

n∑
j=1
j ̸=i

φf

(
H(e

(n)
i (θ))

)
F−1

(
H(e

(n)
j (θ))

)(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)
,

L
(n)∗
4;f (θ) = 2f(0)

1√
n

n∑
i=1

s
(n)
i (θ)

(
G

(n)
� (λ)X(n)β + µf

g(n)(λ)

n

)
.
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Under P
(n)
h;θ , the terms H(e

(n)
i (θ)) (i = 1, . . . , n) are i.i.d. U(0, 1), which implies that, for all

i = 1, . . . , n:

E
[
F−1

(
H(e

(n)
i (θ))

)]
=

∫ 1

0
F−1(u)du =

∫ ∞

−∞
ef(e)de

def
= µf ;

E
[(
F−1

(
H(e

(n)
i (θ))

))2]
=

∫ 1

0

(
F−1(u)

)2
du =

∫ ∞

−∞
e2f(e)de

def
= νf ;

E
[
φf

(
H(e

(n)
i (θ))

)]
=

∫ 1

0
φf (u)du =

∫ 1

0
ϕf
(
F−1(u)

)
du

=

∫ ∞

−∞
ϕf (e)f(e)de = 0;

E
[
φf

(
H(e

(n)
i (θ))

)
F−1

(
H(e

(n)
i (θ))

)]
=

∫ 1

0
φf (u)F

−1(u)du =

∫ ∞

−∞
ϕf (e)ef(e)de = 1;

E
[
φ2
f

(
H(e

(n)
i (θ))

)]
=

∫ 1

0
φ2
f (u)du =

∫ ∞

−∞
ϕ2f (e)f(e)de

def
= If ;

E
[
φ2
f

(
H(e

(n)
i (θ))

)
F−1

(
H(e

(n)
i (θ))

)]
=

∫ 1

0
φ2
f (u)F

−1(u)du =

∫ ∞

−∞
ϕ2f (e)ef(e)de

def
= Kf ;

E
[
φ2
f

(
H(e

(n)
i (θ))

)(
F−1

(
H(e

(n)
i (θ))

))2]
=

∫ 1

0
φ2
f (u)

(
F−1(u)

)2
du

=

∫ ∞

−∞
ϕ2f (e)e

2f(e)de
def
= Qf .
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Moreover, under P
(n)
h;θ , the signs s

(n)
i (θ) (i = 1, . . . , n) are i.i.d. U {−1, 1}. In addition,

n∑
i=1

(
G

(n)
i� (λ)−G

(n)
� (λ)

)
= 0,

n∑
i=1

(
G

(n)
ii (λ)−

tr
(
G(n)(λ)

)
n

)
= 0,

n∑
i=1

n∑
j=1
j ̸=i

(
G

(n)
ij (λ)− g(n)(λ)

n(n− 1)

)

=
n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ij (λ)− n(n− 1)

g(n)(λ)

n(n− 1)

=

n∑
i=1

n∑
j=1
j ̸=i

G
(n)
ij (λ)−

(
n2G

(n)
�� (λ)− tr

(
G(n)(λ)

))

=
n∑
i=1

n∑
j=1

G
(n)
ij (λ)−

n∑
i=1

G
(n)
ii (λ)− n2G

(n)
�� (λ) + tr

(
G(n)(λ)

)
= n2G

(n)
�� (λ)− tr

(
G(n)(λ)

)
− n2G

(n)
�� (λ) + tr

(
G(n)(λ)

)
= 0.

It follows that, under P
(n)
h;θ ,

E
[
∆

(n)∗
f,h (θ)

]
= 0.

Using the decompositions (29) and (30), similar calculations than those summarized in Appendix

A.1 provide the expressions of E
[
∆

(n)∗
f,h;β(θ)

(
∆

(n)∗
f,h;β(θ)

)T]
, E
[(

∆
(n)∗
f,h;λ(θ)

)2]
and E

[
∆

(n)∗
f,h;β(θ)∆

(n)∗
f,h;λ(θ)

]
,

under P
(n)
h;θ , and, at the same time, the expression of matrix I∗f (θ).
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