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Abstract

The basic bathtub model extends Vickrey’s bottleneck model to admit hypercon-
gestion (traffic jam situations). A fixed number of identical commuters travel a fixed
distance over a dense network of identical city streets between home and work in the
early morning rush hour under dynamic MFD congestion. This paper investigates
social optima in the basic bathtub model, and contrasts them with the correspond-
ing competitive equilibria (reported in Arnott and Buli (2018) and Buli (2019)). The
model gives rise to delay-differential equations, which considerably complicate analysis
of the solution properties and design of computational solution algorithms. The paper
considers the cases of smooth and strictly concave travel utility functions and of α-β-γ
tastes. For each it develops a customized solution algorithm, which it applies to several
examples, and for α-β-γ tastes it derives analytical properties as well. Departures may
occur continuously, in departure masses, or a mix of the two. As well, hypercongestion
may occur in the social optimum. The paper explores how these qualitative solution
properties are related to tastes.
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1 Introduction

Hypercongestion occurs when an increase in traffic density is associated with a decrease in

traffic flow; intuitively, it corresponds to traffic jam situations. Starting from the seminal

paper by Geroliminis and Daganzo (2008), over the last decade evidence has been accumulat-

ing on the empirical importance in major metropolitan areas of hypercongestion during rush

hours. The workhorse economic model of rush hour traffic dynamics, Vickrey’s bottleneck

model (1969), rules out hypercongestion by assumption. Urban transportation economists

and scientists have long recognized the potential importance of developing models of rush

hour traffic dynamics with endogenous trip timing that account for hypercongestion. One

has been the basic bathtub model (with endogenous trip timing)1 in which a fixed number

of identical commuters per unit area each travels a fixed distance from home to work over

a dense network of city streets during the morning rush hour, and traffic velocity at a point

in time is negatively related to the contemporaneous traffic density. While the model is

conceptually simple, physically sound, and intuitively appealing, unfortunately it is ana-

lytically intractable; in particular, it gives rise to delay differential equations, which are at

the research frontier in applied mathematics. The literature has taken three different ap-

proaches to deal with this intractability: approximation (Small and Chu 2003, Geroliminis

and Levinson 2009, Arnott 2013), special cases (Arnott et al. 2016, Fosgerau 2015, Lamotte

and Geroliminis 2017), and computation (Arnott and Buli 2018, AB hereafter). Progress is

being made in understanding the model’s properties, albeit rather slowly and inelegantly.

This paper contributes to the line of literature that explores the properties of the basic

bathtub model “proper” – without approximation. It builds on two earlier papers. Arnott

et al. (2016) undertook a preliminary examination of the special case with α-β tastes (no late

1We entitled this paper “Social optimum in the basic bathtub model” since it is a companion to Arnott
and Buli (2018), which has the title, “Solving for equilibrium in the basic bathtub model.” After Arnott and
Buli (2018) was published, Wen-Long Jin brought to Arnott’s attention an unpublished manuscript, dated
1994, in the Vickrey Archives, now published as Vickrey (2019), which defined the term “bathtub model”
for the first time: “Here a maze of congested streets is treated as an undifferentiated movement area in
which movement takes place at a speed which is a function of the density of cars in the area”. Vickrey’s
implicit definition is broader than Arnott’s previous usage of the term, which added a trip-timing equilibrium
condition. We recommend that future research employ Vickrey’s definition.
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arrivals), congestion technology described by Greenshields’ Relation (that traffic velocity is

a negative linear function of traffic density), and a fixed population. Under the assumption

that all departures occur in contiguous departure masses (so that a departure mass departs

from home immediately after the previous departure mass arrives at work) it derived a

closed-form solution for the unique equilibrium, but made only limited progress in solving

the social optimum problem. In the equilibrium, traffic may be hypercongested at the peak

of the rush hour.

AB developed an algorithm to solve numerically for equilibrium in the basic bathtub

model2 when utility is a smooth and strictly concave function of departure time and trip

duration, the congestion technology is described by Greenshields’ Relation, and the popu-

lation is fixed. Two results are particularly noteworthy. First, while, density and velocity

are continuous functions of time over the rush hour, the rate of entry into the traffic stream

(from home) and the rate of exit from the traffic stream (to work) exhibit discontinuities.

Second, there may be two equilibria, one (which is said to exhibit aggregate hypercongestion)

Pareto dominated by the other.

This paper explores the corresponding social optima. Section 3 is a companion to AB.

It develops an algorithm to solve numerically for the social optimum with a similar model

variant that AB employ to examine equilibrium, and applies it to the same examples that

AB employs. For reasons that shall be explained, it is less successful in deriving qualitative

properties of the general solution for the social optimum than was AB is deriving qualitative

properties of the general solution for the equilibrium. Section 4 is a companion to Arnott

et al. (2016). It develops an algorithm to solve numerically for the social optimum with the

same model variant that Arnott et al. (2016) employed to examine equilibrium, and applies

it to solve similar examples. In contrast to the situation with a smooth and strictly concave

utility function, with the assumed α-β-γ tastes many qualitative solution properties of the

social optimum are derived analytically.

Aiming to integrate the results for the two cases of smooth and strictly concave utility

2Buli (2019) draws on the algorithm to investigate existence and uniqueness of equilibrium in the basic
bathtub model, as well as to derive some comparative static properties of equilibrium.
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functions and of α-β-γ tastes, the paper poses three general questions about properties of

the social optimum in the basic bathtub model, without providing complete answers to any

of them:

1. Under what conditions can hypercongestion occur in the social optimum? Conversely,

what restrictions ensure that hypercongestion does not occur in the social optimum?

2. At least for the examples considered, with smooth and strictly concave utility functions

traffic density is continuous over the rush hour. In contrast, with α-β-γ tastes, traffic

density as a function of time exhibits discontinuities, corresponding to all departures

occurring in contiguous departure masses. What is the root cause of the qualitative

difference?

3. In both cases, the entry and exit rate functions of time exhibit discontinuities. Why?

Section 2 sets the stage, providing a formal statement of the social optimum problem.

Sections 3 treats the case of smooth and strictly concave utility functions. Section 3.1 briefly

reviews the solution method developed by AB to solve for equilibrium with smooth and

strictly concave utility functions and presents a sample solution. Section 3.2 develops a

numerical solution strategy to solve numerically for the social optimum with smooth and

strictly concave utility functions. Section 3.3 applies it to several numerical examples, and

section 3.4 compares the numerical solutions for the optimum with those of the corresponding

equilibrium for a particular numerical example. Section 4 treats the case of α-β-γ tastes.

Section 4.1 provides an analytical solution to the social optimum, which includes a sufficient

condition for hypercongestion not to occur and a discussion of why departure masses may

be optimal; section 4.2 develops a customized algorithm to solve for the social optimum; and

section 4.3 presents a numerical example. Section 5 briefly reviews the paper’s contributions,

and discusses outstanding issues and directions for future research.
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2 The Social Optimum Problem

The notation is given Table 1. In the basic bathtub model, a fixed number of identical

commuters per unit area, N , travel the same exogenous distance, L, from home to work in the

early morning rush hour over a dense network of homogeneous city streets. The technology

of traffic congestion is described by a function relating traffic velocity, v, at a point in time

to traffic density, k at that point in time: v = v(k). When combined with the fundamental

identity of traffic flow theory that flow equals density times velocity, the velocity function

is assumed to be such that it yields a macroscopic fundamental diagram (MFD) relating

traffic flow to traffic density with an inverted U -shape, in accordance with Godfrey (1969)

and subsequent empirical analysis. Maximum or capacity flow occurs at capacity density.

With traffic density below capacity density, traffic flow increases with traffic density; in this

region, traffic is congested. With traffic density above capacity density, traffic flow decreases

with traffic density; in this region of density, traffic is hypercongested. For reasons that will

be explained shortly, “distance into the rush hour”, m, is used as the running variable rather

than t, clock time.

The first commuter to leave home/depart in the morning rush hour does so at m = 0.

Since the distance of her trip is L, her trip runs from distance m = 0 to distance m = L, so

that she arrives at work at m = L. The commuter who departs at m = L arrives at m = 2L,

and so on. M is the distance at which the last commuter arrives at work, so that M − L is

the distance at which the last commuter departs for work. We term this form of congestion

“dynamic MFD congestion”.

A commuter’s travel utility is a function of her departure time and the duration of her trip

in terms of time. Letting t(m) denote the departure time of the commuter who departs from

home at distance m, and T (m) denote her trip duration, the travel utility of a commuter who

departs at distance m is U(t(m), T (m)). In social surplus analysis, it is assumed that “$ = $

= $” – that a dollar is valued equally by society from whomever it is taken or to whomever it

is given.3 Where c(m) is the money expenditure on a commuter at distance m, social surplus

3Most of the welfare analysis done in transportation economics is social surplus analysis. There is an
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a : arrival time c : consumption

D : index of departure mass e(m) : entry rate as a function of depar-
ture distance/location

ê(t) : entry rate as a function of depar-
ture time

E(m) : cumulative entries as a function of
distance/location

g : parameter in the generalized
Greenshields’ Relation

h : index in the approximation grid;
see Figure 3

I : maximum possible number of de-
parture masses

i, j : indices

kj : jam density k(m) : traffic density at distance/location
m

k̂(t) : traffic density at clock time t L : distance of a trip

L : the Lagrangian in the optimization
problem

m : departure distance/location

M : distance of the morning rush hour M : set of points in the approximation
grid

N, N : Population, exogenous population q : flow (≡ v k)

SW : social welfare t : depending on context clock time
and departure time

t, t : time of first departure, time of last
departure

t∗, t# : desired arrival time, pivotal arrival
time

t̃ : time of last arrival t(m) : departure time as a function of de-
parture distance/location

Tf : trip duration at free-flow velocity T (m) : trip duration as a function of de-
parture location

T̂ (t) : trip duration as a function of de-
parture time

u, u : utility level, exogenous utility level

uE, uX : entry subutility, exit subutility U(t, T ) : travel utility as a function of depar-
ture time and trip duration

vf : free-flow velocity v(k) : velocity as a function of traffic den-
sity

x(m) : exit rate as a function of dis-
tance/location

x̂(t) : exit rate as a function of clock time

X(m) : cumulative exits as a function of
distance/location

α : unit cost of travel time

β : unit cost of time early γ : unit cost of time late

λ : Lagrange multiplier on population
constraint

τ(m) : travel time per unit distance (=
1/v(k(m)))

Table 1: Notational glossary.
.

7



analysis assumes that the total utility of a commuter at m is U(t(m), T (m)) + c(m), so that

U(t(m), T (m)) is a dollar measure of the travel utility of a commuter at m, which depends on

the cardinalization of the utility function. This entails the assumptions that a commuter’s

total utility is additively separable between travel utility and consumption utility and that

the marginal utility of consumption is unity, as well as a particular cardinalization of travel

utility. Where e(m) is the entry rate function of commuters per unit area who start their

journey at m (which is the entry rate per unit area at m), aggregate total utility, A, is

A =

∫ M−L

0

e(m)
[
U(t(m), T (m)) + c(m)

]
dm (1)

The social planner chooses e(m) to maximize aggregate total utility.4 It is furthermore

assumed that the resources available per unit area for consumption are independent of the

allocation of commuters over the rush hour, so that
∫M−L

0
e(m)c(m) dm is a constant. Thus,

the entry rate function that maximizes (1) also maximizes aggregate travel utility, which is

here termed social welfare, SW:

SW =

∫ M−L

0

e(m)U
(
t(m), T (m)

)
dm (2)

Different restrictions are placed on the form of the travel utility function in different sections

of the paper.

In the social optimum, the planner chooses the entry rate function to maximize social

welfare subject to the following constraints:

alternative and more general “welfarist” approach that does not make the restrictive assumption that $ = $
= $. In this alternative approach, the social planner is assumed to maximize the social welfare function(al)
W ({u(t(m), T (m), c(m))}), where u(t(m), T (m), c(m)) is the total utility of a commuter who departs at m
and {·} denotes a function. This specification allows for the marginal social welfare of consumption/income
of a commuter at m to depend on the commuter’s total utility at m – informally, to place more weight on a
dollar given to a commuter who is worse off. Arnott and Jinushi (2021) contrast the two approaches in an
extended numerical example that uses the model of this paper but with two discrete commuters.

4At this stage, there are no specific restrictions on e(m): it is nonnegative and sums up to the total size of
the population (i.e. Eq. (3)). For integrals in (2) and (3) to be defined, we assume that e(m)U(t(m), T (m))
and e(m) are Lebesgue integrable, respectively. In Sections 3.2 and 4.2 we describe and use algorithms that
restrict entries to mass points, i.e. we approximate e(m) by a sum of measures.
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1. Population constraint

∫ M−L

0

e(m) dm = N (3)

2. Congestion technology

Where τ(m) is the travel time per unit distance at m,

τ(m) = v(k(m))−1. (4)

3. Relationship between clock time and distance

t(m, t) = t+

∫ m

0

τ(u) du so that t′(m) = τ(m), (5)

where t is the time of the first departure.

4. Trip duration5

T (m) = t(m+ L)− t(m) so that T ′(m) = τ(m+ L)− τ(m). (6)

Let x(m) denote the arrival rate at work at distance m, X(m) =
∫ m

0
x(u) du denote the

cumulative number of arrivals at work by distance m, E(m) =
∫ m

0
e(u) du denote the cumu-

lative number of departures from home by distance m, and k(m) denote traffic density at

distance m.

5. Conservation of commuters

k(m) = E(m)−X(m) so that k′(m) = e(m)− x(m). (7)

5The literature on the macroscopic fundamental diagram (MFD) distinguishes between trip-based models
and accumulation-based models. Trip-based models employ (6). Accumulation-based models, in contrast,
make the Little’s Law approximating assumption that the exit flow from traffic equals the density of traffic
divided by the average time a vehicle would spend in traffic at the current speed, which is L/v(m) (so that
x(m) = k(m)÷ L/v(m)).
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6. FIFO condition

X(m) = E(m− L), so that x(m) = e(m− L). (8)

7. Boundary conditions and non-negativity constraints:6





E(0) = 0

E(M − L) = N

by (8)
====⇒





X(L) = 0

X(M) = N.

(9)

Thus, the social optimum problem is to choose e(m), the entry rate function, so as to

maximize social welfare (given by (2)) subject to constraints (3) through (9).

The delay that gives rise to the delay-differential equation structure of the maximization

problem is the delay in distance between the distance at which a commuter exits the traffic

stream and enters the traffic stream. With distance as the running variable, this delay

is exogenous. Combining the conservation of cars with the FIFO condition gives k(m) =

E(m) −X(m) = E(m) − E(m − L). The density of cars on the road at distance m equals

the number of commuters who have entered the road up to distance m minus the number of

commuters who have exited from it by distance m, which is also the number of commuters

who have entered the road up to distance m−L. Differentiating this equation gives k′(m) =

e(m)− e(m−L). The change in the density of commuters between distances m and m+dm

equals the number of commuters who enter the traffic stream over that distance interval

minus the number who exit from it, which is the number of commuters who entered the

traffic stream between distance m− L and m− L+ dm.

In social surplus analysis, a commuter’s travel utility is measured in dollar terms. Her

travel utility may then be interpreted as the negative of her trip cost. Noting this, the

sum of travel utilities over the population equals minus the sum of their trip costs over the

6AB proves that, conditional on the departure set being connected and the density function being
continuous, the conditions of the equilibrium problem imply the non-negativity of entry rates, and hence of
the exit, density, and cumulative arrival and departure functions. We conjecture that an analogous result
holds for the social optimum problem.
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population. Thus, maximizing social welfare, the sum of travel utilities, is equivalent to

minimizing the sum of trip costs.

3 Smooth and Strictly Concave Utility Functions

Section 3.1 briefly reviews the solution method developed by AB to solve for equilibrium

with smooth and strictly concave utility functions, presents a sample solution, and discusses

whether any of the insights it generates into the mathematical structure of the problem carry

over to the social optimum problem. Section 3.2 develops a strategy to solve numerically for

the social optimum with smooth and strictly concave utility functions. Section 3.3 applies

it to several numerical examples, and section 3.4 compares the numerical solutions for the

optimum with those of the corresponding equilibrium for a particular example.

3.1 The Algorithm of Arnott and Buli (2018) to Solve for Equi-

librium

This paper uses “distance into the rush hour”, m, as the running variable. AB in contrast

uses clock time, t, as the running variable. In what follows, where there is possible ambiguity,

we shall write functions of m without a hat and functions of t with a hat; thus, for example,

e(m) denotes the entry rate as function of distance and ê(t) the entry rate as a function of

clock time.

The trip timing equilibrium condition is that utility is constant over the departure set

and is no higher everywhere outside the departure set. With clock time as the running

variable, over the departure set therefore,7 U(t, T̂ (t)) = u, where u is the equilibrium utility

level. With the assumed restrictions on the form of the utility function, this function can

be inverted to give the trip duration function T̂ (t;u), which gives the trip duration with

departure at time t consistent with utility u. With clock time as the running variable, the

7The equilibrium solution depends on ordinal properties of the utility function, which are preserved
under a monotonic transformation. In contrast, as noted earlier, the solution to the social optimum problem
entails a particular cardinalization of the utility function.
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distance condition is that
∫ t+T

t
v(k̂(u)) du = L; a commuter’s trip distance equals the integral

of velocity from her departure at t to her arrival at t+T . Inserting the trip duration function

into the distance condition gives
∫ t+T (t;u)

t
v(k̂(u)) du = L, which combines the trip timing

equilibrium condition and the distance condition. Given the forms of the utility function

and the velocity function, the numerical problem is to solve for an equilibrium utility level,

the departure set, and an entry rate function over the departure set that are consistent

with the trip timing equilibrium condition, the distance condition for the exogenous trip

distance L, the FIFO condition, the population constraint for the exogenous population N ,

and non-negativity constraints.

AB proceeds under the assumptions that the departure set is connected and that the

velocity function is continuous.8 The algorithm it develops has three loops. Taking as given

the time of the first departure, t, and the utility level, u, the innermost loop solves for the

entry rate function consistent with the trip timing equilibrium condition with u, the FIFO

condition, and the condition that all commuters have the same trip distance. In general,

the solution implies an L that is different from L and an N that is different from N . In the

middle and outer loops, u and t are adjusted so as to satisfy the exogenous trip distance and

population using a gradient method. The innermost loop is the non-standard component of

the solution algorithm.

The innermost loop takes as fixed trip duration as a function of t and u, via T̂ (t;u), and

also the start of the rush hour, t. From this it derives the time of the last departure, the

traffic density function and hence the velocity function over the rush hour, and from these

the entry rate function over the departure interval and the exit rate function over the arrival

interval. To reduce the paper’s length, here we only sketch the logic.

The innermost loop starts with the condition
∫ t+T̂ (t;u)

t
v(k̂(u)) du = L. When this condi-

tion holds throughout the departure interval, all commuters receive the same utility level, u,

8Buli (2019) provides incomplete proofs of these assumptions. It also draws on the mathematical insights
obtained from the solution method in AB to derive analytical properties of equilibrium with smooth and
strictly concave utility functions.
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and travel the same distance. First, differentiate this condition with respect to t, yielding

v(k̂(t+ T̂ (t;u)))(1 +
.
T̂ (t;u))− v(k̂(t)) = 0. (10)

AB refer to this as the velocity condition. Consider two commuters, the first of whom departs

at t, the second of whom departs dt after the first. They travel most of their trips together,

but during the initial interval [t, t+dt], the first commuter travels a distance v(k̂(t)) dt that

the second commuter does not. To satisfy the equal trip distance requirement, the second

commuter must make up this trip distance at the end of her trip. To receive the utility

level u, the first commuter has a trip duration of T̂ (t;u) while the second commuter has

trip duration T̂ (t + dt;u) = T̂ (t;u) +
.
T̂ (t;u) dt. Thus, the second commuter travels for

a period of time dt +
.
T̂ (t;u) dt = (1 +

.
T̂ (t;u)) dt after the first commuter has completed

her trip. Over this time interval she travels a distance v(k̂(t + T̂ (t;u)))(1 +
.
T̂ (t;u)) dt.

For the two commuters to travel the same distance, it must therefore be the case that

v(k̂(t+ T̂ (t;u)))(1 +
.
T̂ (t;u)) dt = v(k̂(t)) dt.

The algorithm is formulated in terms of cycles. The first cycle begins when the first

commuter departs at t and ends when she arrives at work, at t + T̂ (t;u); the second cycle

begins when the first commuter arrives at work, and ends when the commuter who departs

at that time arrives at work; and so on. The beginning of each cycle is termed a breakpoint.

In equilibrium there are I full cycles and one partial cycle at the end of the rush hour when

the last commuter departs. At the start of the rush hour, velocity equals free-flow velocity.

Eq. (10) then gives the equilibrium velocity at the start of the second cycle, and by recursion

the equilibrium velocity at the start of all active cycles can be determined. Since commuters

prefer more central departure times, to satisfy the trip timing condition velocity falls over

the early morning rush hour as congestion intensifies and then rises in the late morning rush

hour. Eventually a breakpoint is reached, say breakpoint J , at which the velocity required

to satisfy (10) rises above free-flow velocity. From this the equilibrium number of full cycles

conditional on u can be determined.
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Differentiating (10) with respect to t gives

v′(k̂(t+ T̂ (t;u)))
.
k̂(t+ T̂ (t;u))(1 +

.
T̂ (t;u))2

+ v(k̂(t + T̂ (t;u)))
..
T̂ (t, u) − v′(k̂(t))

.
k̂(t) = 0, (11)

which AB refer to as the acceleration condition. This equation implies that there is a dis-

continuous increase in the entry rate at t.9 The discontinuous increase in the entry rate at t

generates a discontinuous increase in the exit rate at t+ T̂ (t;u), and to keep traffic density

continuous, this in turn requires a discontinuous increase in the entry rate at t+ T̂ (t;u); and

so on. Thus, there are discontinuous increases in the entry rates at all breakpoints.

To simplify the exposition, the congestion technology is assumed to be Greenshields’

Relation: v(k̂(t)) = vf (1 − k̂(t)/kj) and units are chosen such that vf = 1 and kj = 1, so

that Greenshields’ Relation becomes v(k̂(t)) = 1 − k̂(t), and v′(k̂(t)) = −1. Since cycles

are interlinked, the notation is modified. Let tI(t) be the time in cycle I corresponding

to time t in the first cycle (so that a commuter who enters at time tI(t) exits at time

tI+1(t) = tI(t) + T̂
(
tI(t);u

)
). Employing these changes, the above equation reduces to

−
.
k̂(tI+1(t))

(
1 +

.
T̂ (tI(t);u)

)2

+ v
(
k̂(tI+1(t))

) ..
T̂
(
tI(t);u

)
+
.
k̂(tI(t)) = 0,

which is a delay-differential equation with a variable delay.

Letting ê(tI(t)) and x̂(tI(t)) denote the entry and exit rates at tI(t),
.
k̂(tI(t)) = ê(tI(t))−

x̂(tI(t)). Furthermore, since x̂(tI(t)) = ê(tI−1(t)),
.
k̂(kI(t)) = ê(tI(t))− ê(tI−1(t)). Using this

9The acceleration condition (11) reveals mathematically why the entry rate function is discontinuous at
t = t. Evaluate the limit of (11) as t falls to t. Suppose that the entry rate function is not discontinuous at

t. Then the limit of
.
k̂(t) as t falls to t goes to zero. Since v > 0, v′ < 0, and

..
T̂ < 0, in the limit as t falls to t,

(11) can be satisfied only if the limit of
.
k̂(T (t;u)) as t falls to t is negative. In words, the first car to depart

arrives when traffic density is decreasing. Since the entry rate at t is zero, so too must be the exit rate at
t+ T (t;u). But this implies that the entry rate at t+ T (t;u) is negative, which is not physically possible.
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relationship and substituting out v(k̂(tI+1(t))) using (10), this equation becomes

−
[
ê(tI+1(t))− ê(tI(t))

](
1 +

.
T̂
(
tI(t);u

))2

+

v
(
k̂(tI(t))

) ..
T̂
(
tI(t);u

)(
1 +

.
T̂
(
tI(t);u

))−1

+
[
ê(tI(t))− ê(tI−1(t))

]
= 0 (12)

This is a linear equation relating the entry rate at tI(t) to the entry rates at tI−1(t) and tI+1(t)

as well as the exogenous magnitudes
(
1+

.
T̂
(
tI(t);u

) )2
,
..
T̂
(
tI(t);u

)
, and

(
1+

.
T̂ (tI(t);u)

)−1
.

Thus, the entry rate at a particular point in time is linked to the entry rates at the corre-

sponding point in time in both the previous and subsequent entry cycles.

Now apply (12) at the time of the first departure, t1(t), on the assumption there is only

a partial entry cycle with utility level u. ê(t2(t)) = 0 since there are no entries in the second

cycle, and ê(t0(t)) = 0 since there are no entries before the first departure. Furthermore,

v
(
k̂(t1(t))

)
= 1 since velocity equals free-flow velocity at the time of the first departure.

Thus, (12) can be solved for the equilibrium entry rate at the time of the first departure,

t1(t). Now time step forward in increments of dt. At t+dt, k̂(t1(t+dt)) equals the cumulative

number of cars that have entered by time t1(t+dt), which is ê(t1(t)) dt, minus the cumulative

number of cars that have exited, which is zero since the first car to enter does not exit until

t2(t). Applying Greenshields’ Relation, velocity at t1(t+ dt) can be calculated, from which,

using (10), the corresponding equilibrium exit velocity of that commuter can be determined.

Continue time stepping forward. When the last commuter to depart arrives, traffic density

is zero and free-flow velocity is 1. Thus, the exit velocity of the last commuter to depart is 1.

This condition is used to determine the time of the last departure. This procedure generates

the complete solution.

Now extend the analysis to the case where there is a single full cycle and a partial entry

cycle. Then ê(t1(t)) and ê(t2(t)) are positive, while ê(t0(t)) and ê(t3(t)) are both zero. Thus,

(12) generates a pair of equations (the first corresponding to I = 1, the second to I = 2) in

the two unknowns ê(t1(t)) and ê(t2(t)), from which the complete solution can be generated

by time stepping forward from t1(t) until the time of the last departure. The procedure may
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be extended to an arbitrary number of full entry cycles followed by a partial entry cycle.

We have noted that there are discontinuities in the entry rates at what we have termed

breakpoints. More properly, these should be called primary breakpoints. The problem ex-

hibits a form of symmetry. There are two boundary conditions. The first is that velocity

equals free-flow velocity at the time of the first departure, the second that velocity equals

free-flow velocity at the time of the last arrival. The problem can also be solved by run-

ning backwards in time from the time of the last arrival. Corresponding to this symmetry,

there are also cycles that run backwards in time, corresponding to which there are secondary

breakpoints. The first secondary breakpoint is the time of the last arrival; the second sec-

ondary breakpoint is the time at which the last arrival departs, and so. Again corresponding

to this symmetry, when time is run forward there is a discontinuous decrease in the exit rate

at all secondary breakpoints. More precisely: At all primary breakpoints in the departure

interval (the interval of times over which there are positive departures), there is a discon-

tinuous increase in the entry rate; at all primary breakpoints in the arrival interval, there

is a discontinuous increase in the exit rate; at all secondary breakpoints in the departure

interval, there is a discontinuous decrease in the entry rate; and at all secondary breakpoints

in the arrival interval, there is a discontinuous decrease in the exit rate.

Of particular note is that the solution algorithm is built around the exogenous trip

duration function, T̂ (t;u), which is obtained from the trip timing equilibrium condition. AB

chose to use time as the running variable since the trip duration function is much easier

to express in terms of time than in terms of distance. This argument for using time as

the running variable does not apply to the social optimum since the trip timing condition

does not apply. Using distance as the running variable rather than time has the advantage

that the distance lag between a commuter’s departure and her arrival is exogenous. When

distance is used as the running variable, the primary breakpoints occur at m = 0, L, 2L, . . ..

And where M denotes the distance of the last arrival, the secondary breakpoints are at

M,M − L,M − 2L, . . ..

Figure 1 displays equilibrium for a particular numerical example.10 Panel A displays

10Units are commuters, miles, and hours, with t = 0 corresponding to the first feasible departure time and
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Figure 1: An equilibrium example from AB. On panel C, exit rates are given in thin lines.
Units are hours and miles.

the trip duration function, T̂ (t), panel B the velocity function, v(k̂(t)) = v̂(t), and panel C

the entry and exit rate functions, ê(t) and x̂(t). As expected, velocity falls over the early

morning rush hour and then rises over the late morning rush hour, and trip duration has the

opposite pattern. As discussed above, notice the discontinuous increases in the entry and

exit rates at the primary breakpoints, as well as the discontinuous decreases in the entry

and exit rates at the secondary breakpoints (which, as drawn, occur about one-quarter of

the way through each cycle).

The rest of this subsection discusses whether the insights developed in AB and Buli

(2019) into the mathematical structure of the equilibrium problem with smooth and strictly

concave utility functions can be usefully applied to develop a customized algorithm to solve

the social optimum problem and to derive analytical properties of the social optimum with

smooth and strictly concave utility functions.

t = t# to the latest feasible arrival time. The utility function has the form U = r0 log(r1 t) + s0 log(s1 (t
#−

(t + T̂ (t)))), and its parameters are r0 = 15, r1 = 0.5, s0 = 18, s1 = 1, and t# = 6. The congestion
function is Greenshields’ Relation: v = vf (1 − k/kj), where vf is free-flow velocity and kj is jam density,
and its parameters are vf = 15 and kj = 106. The trip distance is L = 6 and the exogenous population is
N = 2.246× 106.
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Figure 2: Impacts of an added commuter at m = m1 on traffic density, trip duration and
entry time.

Solving for an optimum differs generically from solving for an equilibrium. However,

it often facilitates computation and generates additional insight to set up an optimization

problem as an equilibrium problem or vice versa. One of the features of the solution to the

social welfare optimization described in the previous section is that the increase in social

welfare from a marginal increase in the number of commuters must be the same, at whatever

distance m in the departure set the marginal commuter is inserted into the traffic stream.

If it were otherwise, it would be possible to increase social welfare with a fixed population

by changing some commuter’s departure time. This observation suggests constructing a

solution algorithm by replacing the trip timing condition of the equilibrium problem with

the property of the optimum problem that the increase in social welfare from an adding a

commuter must be the same at all locations in the departure set and no higher at locations

outside the departure set. Via the Envelope Theorem, the increase in social welfare from

adding a commuter at distance m is the same whether the entry rate function is held fixed

at its pre-perturbation level or treated as endogenous.
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Figure 2 graphically depicts the effects of adding a commuter to the traffic stream at

distance m1, without changing the entry rate at other distances. Panel A shows that she

causes traffic density to increase by one commuter between the time she enters the traffic

stream and the time she exits it at m1 + L, but has no effect on traffic density outside the

interval. Panel B shows that the increase in traffic density over the interval [m1,m1 + L)

increases the trip duration of all commuters who enter between (m1−L,m1+L] and by more

the longer the distance interval a commuter shares the streets with the added commuter.

Since the entry rate at all other distances is held constant, the added commuter also causes

commuters entering at distances greater that m1 to delay (in terms of clock time) their

entries onto the city streets, as shown in Panel C. Calculating the increase in social welfare

from adding a commuter at distance m1, SW(m1), entails applying this perturbation to the

social welfare function.

The procedure can be simplified by altering the perturbation. Instead of adding a com-

muter at distance m1, move the commuter’s departure distance a distance dm earlier or

later. At the social optimum, this marginal change in the commuter’s departure distance

should have zero effect on social welfare. This perturbation has simpler effects but they

nonetheless extend over intervals. For example, moving the departure time of a commuter

from m1 to m1+dm: (i) decreases traffic density by one commuter between m1 and m1+dm,

which reduces the trip duration of all commuters on the streets at that time, who are those

who depart between m1−L and m1; (ii) increases traffic density by one commuter between

m1 + L and m1 + L+ dm, which adds to the trip duration of all commuters on the road at

m1+L, who are those who depart between m1 and m1+L. The perturbation also affects the

departure time of all those who depart after m1. Thus, even this very simple perturbation

has a complicated effect on social welfare.

These thought experiments are discouraging. First, they suggest that reformulating

the social optimum problem as an equilibrium problem using the property of the social

optimum that marginal social welfare is the same at all distances in the departure interval is

unlikely to be fruitful. As a result, the algorithm developed in the next subsection to solve
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numerically for the social optimum does not exploit this property. Second, they suggest

that deriving analytical properties11 of the social optimum with smooth and strictly concave

utility functions is likely to be very difficult. For example, how to proceed in identifying

primitive conditions under which hypercongestion can occur at the social optimum with

smooth and strictly concave utility functions is unclear.

In contrast, considerably more success was achieved in the case of α-β-γ tastes, the results

for which are reported in Section 4.

It was noted earlier that social welfare, the sum of travel utilities over the population,

equals the negative of the sum of trip costs over the population, so that maximizing the

sum of travel utilities over the population generates the same allocation as minimizing the

sum of trip costs. This interpretation of the social optimum problem permits the analysis

to be cast in the terminology used in partial equilibrium analysis to describe externalities.

Under this interpretation, the amount by which the addition of a commuter at distance

m increases total trip cost is the marginal social cost of a trip at m. Accordingly, at the

social optimum, the marginal social cost of a trip is the same for all departures in the

departure interval. In the partial equilibrium theory of externalities, the marginal social

cost of a trip can be decomposed into the marginal private cost (or user cost) of the trip

and the marginal external (congestion) cost. Under this interpretation, the social optimum

problem is so complicated because the addition of a commuter at distance m1 generates

such a complex pattern of externalities. The externalities operate through two channels,

departure time and trip duration. Return to Figure 2. The addition of a commuter at m1

changes the trip durations of all commuters who depart between m1−L and m1 +L, in the

way displayed in Panel B of Figure 2. Consider a commuter at location m′ in this interval.

Through the trip duration channel, the addition of the commuter at m1 increases her trip

cost by ∆T (m′;m1)UT (t(m
′), T (m′)), where ∆T (m′;m1) denotes the change in trip duration

at m′ induced by the addition of a commuter at m1. Similarly, through the departure time

11The following conjectures concerning properties of the social optimum with smooth and strictly concave
utility functions remain unproved: (i) The departure set is connected. (ii) The entry function is continuous
except at primary and second breakpoints. (iii) The density and velocity functions are continuous. (iv)
Utility as a function of departure location has an inverted U -shape.
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channel, her trip cost increases by ∆t(m′;m1)Ut(t(m
′), T (m′)), where ∆t(m′;m1), the change

in departure time at m′ induced by the addition of a commuter at m1, is displayed in Panel

C of Figure 2. The marginal external cost of a trip at m1 is therefore the integral over all

distances in the departure interval of the external trip duration costs and external departure

time costs.

3.2 The Algorithm to Solve for the Social Optimum

Because the properties of the social optimum with smooth and strictly concave utility func-

tions conjectured in fn. 11 remain unproved, the algorithm presented here is more “off the

rack” than the algorithm developed by AB to solve numerically for equilibrium with smooth

and strictly concave utility functions. In one respect, however, the algorithm does draw on

one of these unproved conjectures. Drawing on the conjecture that discontinuities in the

departure and arrival rates occur only at primary and secondary breakpoints, it structures

its discretization of time around the primary breakpoints and secondary breakpoints, which

were defined above.12

The algorithm we employ uses discretization.13 A basic step is the construction of an

approximation grid for variable m. We first describe this step and then give a description

of the algorithm. Entries and exits occur only on the grid. Without loss of generality, we

assume m1 = 0 (this origin can be shifted when the utility function is not defined in zero,

e.g. for the logarithmic utility formulation). When a point mi belongs to the grid, it could

be an entry point, so point mi + L, which is the corresponding exit point, should be in the

grid too. Point mi could also be an exit point, and in this case point mi − L, which is the

12A referee suggested that this discretization may give the false impression that there are discontinuities
in the entry and exit rates at the breakpoints when, if the conjecture is not true, there are not. This point
will be addressed in the discussion of Figure 6.

13Restricting entries to occur at discrete points is somewhat a strong assumption on e(m). This choice
is mainly motivated by computational objectives and as we explain in the numerical examples it yielded
satisfactory and robust results. Other schemes are possible, like constant entry rates over given intervals
(we initially tried this option but it yielded slow convergence) or polynomial approximation. Since we lack
a full analytical characterization of the optimum solution, using approximation leaves open an issue that we
leave for future research: prove (theoretically) that the solution of the approximate problem converges to
the solution of the original problem.
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corresponding entry point, should belong to the grid too. Thus, when mi belongs to the grid,

points mi − L and mi + L should also belong to the grid.14 The grid includes all primary

and secondary breakpoints because they satisfy this requirement and discontinuities in entry

and exit rates are expected to occur there. Indeed, as illustrated by the bottom line in

Figure 3, the simplest grid is limited to primary and secondary breakpoints. As is standard

with discretization a finer grid is expected to yield a better approximation. In our case, other

points can be added and any construction is acceptable as long as it meets the entry and

exit requirement described above. The top line in Figure 3 provides an example of a finer

approximation where four evenly spaced points were added between each pair of successive

primary breakpoints. From this graphical illustration, it is clear that there exists a positive

integer h such that when an entry occurs at point mi, for i = 1, . . . , n, the corresponding

exit occurs at point mi+h: the exogenous delay in the continuous problem is now expressed

as a lag in the indices of the approximation grid. This feature is particularly useful to the

formulation of the optimization problem below.

Once the approximation grid is constructed, we obtain a set of points, M = {m1, . . . ,

mn, . . . ,mn+h}, where all entries and exits occur. The first entry occurs at m1 and the last

entry at mn. The first exit occurs at point m1+h and the last exit at point mn+h.
16 The

computation of the utility for each agent is straightforward. Traffic density between any

points mi and mi+1 is constant. Given entries ei for i = 1, . . . , n, the densities are given by

ki =
∑min(i,n)

j=max(1,i−h+1) ej for i = 1, . . . , n+h−1. Travel speed in the same interval is vi = v(ki),

and the time to run from mi to mi+1, for i = 1, . . . , n+ h− 1, is ∆ti = (mi+1 −mi)/vi. We

then compute clock time ti at each approximation point as ti+1 = ti +∆ti with the starting

point t1 = t. Each agent enters at a given time ti, for i = 1, . . . , n, and exits at ti+h. His trip

duration is Ti = ti+h− ti, and his utility level is Ui = u(ti, Ti). Social welfare is computed by

summing over all the population, i.e. SW =
∑n

i=1 ei ui. The objective is then to maximize

SW subject to population constraint
∑n

i=1 ei = N and nonegativity of decision variables, i.e.

14But, when mi < L (resp. mi > M − L) only mi + L (resp. mi − L) should be in the grid.
15Notice that other procedures can be used to add new points.
16Thus, n is the number of points where entries (or exits) occur, and h is the number of entry (resp. exit)

points without exits (resp. entries).
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Figure 3: Approximation grid and complementary notation. The grid in the bottom line
has only primary (red) and secondary (blue) breakpoints. In the top line, a finer grid is
obtained by adding four evenly spaced points within each of the intervals (0, L), (L, 2L) and
(2L, 3L); then m14, m15 and m16 are shifted to the right by distance L to obtain m20, m21

and m22.
15 It is clear how to obtain the value of h so that a mass entering at point mi exits

at point mi+h.

ei ≥ 0 for i = 1, . . . , n.

The algorithm itself has three loops with an objective that can be stated as

max
t,M

{
max
M

{
max

m1,...,mn

SW

}}
.

The innermost loop uses an optimizer to solve for the social optimum, conditional on the

number of entry points over the rush hour, as well as the start of the rush hour, t, and

the distance of the rush hour, M . The optimization problem is the same as that described

in Section 2, but with distance being divided into intervals rather than being treated as

continuous. The central loop successively refines the estimate of the optimum by increasing

the number of entry points, but still holding constant the start and the distance of the rush

hour. The loop is terminated when a satisfactory degree of convergence is reached. The

outermost loop first determines the gradient of the sum of utilities with respect to t and M

jointly and then updates the guess of the socially optimum t and M . The loop is terminated
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when a satisfactory degree of convergence is reached. As is standard with such algorithms,

the computational efficiency depends on the step size that is employed in the central loop

(with a larger step size decreasing stability), and on the how the tolerance is adjusted in the

process of convergence to equilibrium. The implementation of this algorithm involves the

coding of the objective function, and depending on the solver to be used, the gradient and

Hessian of the Lagrangian among other materials.17 The detailed description of these steps

is given in Appendix B.

3.3 Social Optima for Several Numerical Examples

The examples here are based on utility functions employed in AB, a logarithmic utility

function and an exponential utility function. The logarithmic utility function is

u(t, T ) = r0 log
(
r1 t
)
+ s0 log

(
s1 (t

# − t− T )
)
, (13)

where r0, r1, s0 and s1 are positive parameters. This form of the utility function is consistent

with the Vickrey (1973) utility maximization formulation, rather than the Vickrey (1969)

cost minimization formulation. The first term in (13) is the entry subutility, which increases

in t as the commuters prefer to delay their departure from home. The second term is the

exit subutility and reflects the preference of early arrival at work. Utility maximization is

obtained as a trade-off between these two parts. Since the terms in the logarithm should

be positive, the first entry must occur after time zero and exit time is necessarily smaller

than t#. The second expression for a smooth and strictly concave utility function has an

exponential form and is given by

u(t, T ) =
A0

a1

(
1− e−a1 t

)
+

B0

b1

(
1− e−b1 (t#−t−T )

)
, (14)

17All the source code used in this paper is available at https://gogs.univ-littoral.fr/mkilani/

optBathtub.
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where A0, a1, B0 and b1 are positive parameters. As in the former case the utility is the

sum of entry and exit subutilities, but the exponential formulation in (14) is more flexible

insofar as entries can occur before time zero and last exits can occur after t#. Several

properties of these formulations are discussed in AB, which showed that traffic equilibrium

can entail hypercongestion under both formulations. We use their parameter values for the

utility functions and trip characteristics and consider several formulations relating velocity

to traffic density. As we report below, hypercongestion is absent in the examples we have

considered. For the numerical examples where we are interested in the comparison between

the optimum and the equilibrium (AB paper), we have used Greenshields’ Relation, i.e.

v(k) = vf (1−k/kj). But, since this expression is frequently viewed as unrealistic, we have run

some computations with the generalized Greenshields’ Relation, i.e. v(k) = vf (1− (k/kj)
g),

with g > 0, and we have also used the relationship v(k) = vf (1− k/kj)/(1 + 3k/kj), which

yields maximum traffic flow at one third of jam capacity, and velocity at capacity flow equal

to one third free-flow velocity.

For the logarithmic utility function we report in Figure 4 the output of several cases

corresponding to the three formulations of velocity mentioned above and two population

sizes, N = 16.6 and N = 22.5. During the first cycle of the rush hour, the cumulative entry

curve coincides with the traffic density curve since there are no exits. For each one of the three

formulations of velocity, we see that when the number of commuters increases, the distance

of the rush hour increases, and the traffic density curves move upwards; the first departure

occurs earlier and the last arrival occurs later. The maximum value reached by traffic

density increases with the population size, but, in all cases we check that it remains smaller

than the value of traffic density where traffic flow is at the maximum. For Greenshields’

Relation this value is half jam capacity, i.e. kj/2 = 5, for the generalized Greenshields’

Relation it is kj/(1 + g)1/g < kj/2, for 0 < g < 1, and for v(k) = vf (1 − k/kj)/(1 +

3k/kj) it is kj/3. This confirms the absence of hypercongestion for the six cases reported

here and all the other experiments we have conducted with utility functions (13) and (14).

Notice that dashed curves (corresponding to the generalized Greenshields’ Relation) are

25



0

10

20

0 1 2 3 4 5 6
Clock time

(2)

(1)

k̂(t)
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Figure 4: Cumulative entries and traffic density for six cases with the logarithmic utility
function: three formulations of velocity with respect to traffic density and two population
sizes, a moderate one, N = 16.6 and corresponding to curves (1), and a larger one, N = 22.5
and corresponding to curves (2). Parameter values used in all examples in this section:
kj = 10, vf = 15, L = 4 and t# = 6. For utility function (13) we use r0 = 15, r1 = 1/2,
s0 = 18 and s1 = 1.

slight deviations from the dotted curves (Greenshields’ Relation). This can be seen as a

sensitivity analysis with respect to the congestion technology; when the threshold for the

occurrence of hypercongestion is smaller, the rush hour is longer and the maximum traffic

density is smaller. With a technology where the maximum traffic flow occurs at a smaller

value, as in the case of the third relation considered here, and for the same population,

the rush hour is longer with higher congestion, but still no hypercongestion occurs. Apart

from these quantitative observations, notice that the optimum solution exhibits a similar

qualitative structure for all the reported cases.

To give a closer picture of a specific, though representative, case we provide a more

detailed presentation for an optimum corresponding to the exponential utility function given

in (14). As we have noticed above, with this expression the rush hour can expand before time

t = 0 and after time t = t#. A large population size is considered to illustrate this point:
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Figure 5: Output for the exponential utility function and a large population N = 40.0,
yielding an average utility u = 14.9474. For the model parameters see Figure 4, and for
parameters in the utility function (14) we use A0 = 5, a1 = 1/3, B0 = 10 and b1 = 1/2.
Travel speed is given by v(k) = vf (1− k/kj)/(1 + 3k/kj).

N = 40. The other model parameters are those used in the previous examples (Figure 4)

and the parameters of the utility function are A0 = 5, a1 = 1/3, B0 = 10 and b1 = 1/2. The

main variables corresponding to the optimum are illustrated in Figure 5.

Entry and exit rates are given in the upper left panel. The rush hour starts at t =

−2.84 < 0 and ends at t̃ = 7.22 > 6.0 = t#, so the rush hour is 10.06 hours long with

sixteen entry cycles. The upper right panel shows velocity and traffic density as functions of

clock time. The minimum travel speed is equal to 5.26 mph for a corresponding maximum

value of traffic density equal to 3.16 < 3.33 = kj/3, i.e. traffic is highly congested but not

hypercongested. Traffic density is inverted U -shaped and traffic speed is U -shaped. Entries

into the bathtub, even though they feature discontinuities, produce smooth evolution of

traffic density, velocity and traffic flows. It is important to notice that the discontinuities
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in entry and exit rates occur at the breakpoints we have used in the approximation grid.

Indeed, and as we discuss below, these points turn out to be very important to obtain fast

and monotonic convergence to the optimum solution. The functions T (t) and
.
T (t) are given

in the lower right hand panel. During a large part of the rush hour, trip duration does not

vary much since the derivative of
.
T (t) is small in absolute value. Early and late departures

benefit from lower traffic densities and incur smaller travel times. Groups departing in the

middle of the rush hour (the peak) have higher travel time but get higher utility because they

have smaller penalties from departing too early or arriving too late (the shoulders). This

can be seen in the lower left panel which reports utility levels. The first term in the utility

function, (14), is denoted uE (for “entry subutility”) and the second term is denoted uX (for

“exit subutility”). The average utility level is 14.947 and the difference between the highest

and lowest utility levels is equal to 27.719. The commuters departing at the beginning or

the end of the rush hour are particularly penalized. The marginal social cost is the sum of

the user cost and the marginal external cost.18 At the optimum, the marginal social cost is

equal for all departure times and the marginal external cost is higher for the peak. It follows

that the user cost is smaller at the peak than in the shoulders.

The solution procedure we are using here is based on the approximation grid described

in Figure 3, which is based on breakpoints given in the lower panel of that figure. Then,

one may ask how a simpler approximation grid, based on equidistant approximation points,

would perform by comparison to our scheme. Also, it is useful to evaluate the convergence

rate of a given solution procedure with respect to the number of approximation points. To

discuss these issues we have considered an example with the logarithmic utility function and

the same parameter values used before and N = 30. For each approximation scheme, the

optimum solution is computed for several numbers of approximation points. Our results

show a clear benefit from using the breakpoints to construct the approximation grid.

The output reported in Figure 6 is useful to illustrate this point. On the left panel

(Fig. 6a), we report the values of the objective functions with respect to the number of

approximation points. Both methods get close to the optimum with less than one hundred

18In the next section we show how to relate utility levels to user costs.
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Figure 6: Comparison with a simple grid of equidistant approximation points.

approximation points, but clearly the method based on the breakpoints is much faster. The

error in this case is relatively smaller even when only the breakpoints are used (like the

grid in the bottom of Figure 3). The convergence with the uniform grid is not monotonic.

Indeed, a uniform grid with approximation points that are close to the breakpoints provides

a better solution than a uniform grid with a few more approximation points that are more

distant from the breakpoints. Still, with more than 50 approximation points, the uniform

grid provides a good approximation of the objective function (social welfare). However,

increasing the number of approximation points with the uniform grid will fail to converge to

the true solution as is shown on the right panel (Fig. 6b). The optimum solution involves

a discontinuity in entry rates at the breakpoints (bottom panel in Fig. 6b). The uniform

grid fails to capture this dynamic, instead exhibiting persisting oscillations in traffic density,

velocity, and flow during the rush hour (top panel in Fig. 6b). These features were observed

for several other examples and our experiments show a clear benefit of using the algorithm

described in section 3.2.
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Figure 7: Average user cost for the equilibrium and the optimum as a function of the
population size: the case of the logarithmic utility function. Parameter values are those
given in Figure 4.

3.4 Comparison of the Optimum and the Equilibrium

For the optimum solutions reported above, entry rates exhibit discontinuities at primary and

secondary breakpoints. Comparable discontinuities in entry rates are observed in equilibrium

(cf. AB). Examples of equilibrium with hypecongestion usually show a large entry rate at

the beginning of the rush hour and then many fewer entries during the rest of the period. We

did not find any optimum configuration where entries are comparably high in the beginning

of the rush hour. With a small population, the equilibrium may not be hypercongested but,

from the examples in AB, entry rates remain higher at the beginning of the rush hour.

For the comparison between the equilibrium and the optimum, it may be interesting to

notice that utility levels and user costs can be related.19 Define ν = maxt U(t, 0) to be

maximal travel utility. It is the travel utility of a commuter with a zero trip duration and

departure at the utility-maximizing time conditional on zero trip duration. Then define the

user cost of a trip with trip duration T and departure time t as ν − U(t, T ). It therefore

19For a more detailed presentation see AB.
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Figure 8: Comparison of the social optimum and the equilibrium (aggregate congestion) a
population size N = 22.46. The logarithmic utility function is used and the other parameter
values are those given in Figure 4. Traffic density and cumulative entries are normalized.
Superscripts “e”and “o”, respectively, refer to equilibrium and optimum.

equals maximal utility minus actual utility. Using these definitions, we can then draw the

curve relating user cost to population in equilibrium and the curve relating average user cost

to population in the social optimum.

One of the main findings in AB for the equilibrium solution is that the user cost curve

can be backward bending. When this occurs, up to a critical level of population there are

two equilibria, while above this population level no equilibrium exists. This is illustrated in

Figure 7 for the logarithmic utility function. Equilibria on the increasing part of the curve,

which are stable, are referred to as equilibria with “aggregate congestion”. Equilibria lying

on the decreasing part of the curve, which are unstable and correspond to a relatively higher

user cost, are referred to as equilibria with “aggregate hypercongestion”. In Figure 7 we add

the average user cost corresponding to the optimum. As expected, this curve is below the

equilibrium user cost curve, increasing but at a much slower rate.

We now compare the dynamics for two specific cases. We use here Greenshields’ Relation

since AB produced equilibria with this formulation. The logarithmic utility function is

considered in both cases for which we characterize the optimum. The optimum is compared
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to the equilibrium with aggregate congestion in the first case, and then compared to the

equilibrium with aggregate hypercongestion in the second case. Figure 8 shows the structure

of the optimum and the equilibrium for the first case. The left panel provides a comparison

of the traffic densities and cumulative entries, and the right panel plots the velocity and

traffic flow as a function of clock time t. The rush hour is slightly longer in the optimum.

It starts at t = 1.32 (instead of 1.35), the last entry occurs at t = 3.91907 (instead of 3.78)

and the last arrival occurs at t̃ = 4.2376 (instead of 4.21). The main difference between

the equilibrium and the optimum is that, at the beginning of the rush hour, the entry rate

is considerably higher in the equilibrium than in the optimum. In the right panel, and by

comparing the traffic velocity and flow curves, we can conclude that traffic is hypercongested

when both curves are increasing or both are decreasing.20 For the equilibrium, this is the

case during a large part of the rush hour, yielding longer travel times and lower utility levels.

Notice that rush hour durations are almost equal for the equilibrium and the optimum. The

rush hour duration is equal to the population size divided by the average inflow (or average

outflow). Since trip distance is fixed, this implies that average traffic flow is more or less

the same in the equilibrium and the optimum, which is consistent with different average

velocities only if the optimum traffic flow is on average congested, while the equilibrium

traffic flow is on average hypercongested.

Figure 9 reports the same variables for the second case. The population size is decreased

to N = 16.56, and we consider the equilibrium with aggregate hypercongestion. For the

optimum, the rush hour is significantly shorter, traffic density has the usual inverted U -

shape and remains below kj/2, i.e. no hypercongestion. By comparison to the first case,

the average utility increases from 22.4 to 23.1. The equilibrium, however, entails severe

hypercongestion and the difference between equilibrium and optimum is strong and spreads

over the long rush hour period, which starts very soon, at t = 0.0787 and ends shortly before

t#. Travel speed quickly decreases below 1 mph, driving traffic flow down too.

20Taking the derivative of v(k̂(t)) k̂(t) with respect to t, we obtain (v′ k+ v) k′ after omitting arguments.
If traffic flow and traffic speed are both decreasing, then (v′ k + v) < 0 (since k′ > 0), which correspond to
hypercongested traffic. When both traffic density and traffic speed are increasing a similar argument proves
that traffic is hypercongested.
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Figure 9: Comparison of the social optimum and the equilibrium (aggregate hypercongestion)
with a population size N = 16.56. The logarithmic utility function is used and the other
parameter values are those given in Figure 4. Traffic density and cumulative entries are
normalized. Superscripts “e”and “o”, respectively, refer to equilibrium and optimum.

4 Social Optimum with α-β-γ tastes

With α-β-γ tastes, the utility function takes the form:

Û(t, T (t)) =





−αT (t)− β
(
t∗ − (t+ T (t))

)
, for early arrivals

−αT (t)− γ
(
−t∗ + (t+ T (t))

)
, for late arrivals.

(15)

This section examines properties of the social optimum in the model of this paper with α-

β-γ tastes. It takes over where (Arnott et al. 2016, AKN hereafter) left off. AKN focused

on equilibrium for a special case: identical commuters, α-β tastes (no late arrivals) and

MFD congestion with Greenshields’ Relation. It provided a closed-form solution for equi-

librium and examined solution properties. Section 6 of that paper provided a preliminary

examination of the social optimum for the special case. Since it was unsuccessful in finding

a closed-form solution with more than two departure masses, it restricted analysis to the

case where the population is sufficiently small that the social optimum has only one or two
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departure masses.

This section goes beyond AKN’s analysis of the social optimum in three major respects.

First, it imposes no restrictions on the population; second, it works with a general functional

form relating velocity and density; and third, it focuses on qualitative properties of the social

optimum.

AKN considered only restricted equilibria, in which the pattern of departures is a suc-

cession of departure masses, with a mass departing as soon as the previous departure mass

arrives. The paper conjectured that equilibria can take only this form but did not prove it.

Analogously, in this section we consider only restricted social optima, which have the same

qualitative departure pattern. In particular: (i) The travel interval is connected; and (ii)

All entries occur in entry masses at primary breakpoints, which implies that all exit masses

occur at primary breakpoints. All the analysis is predicated on the conjecture that restricted

social optima are the global optima. In what follows, we refer to restricted social optima

simply as social optima.

4.1 Properties of the Social Optimum

In the social optimum, the marginal social cost of trips are equalized. How should the

marginal social cost of a trip be calculated? Think of the social optimum in the basic

bottleneck model, in which the entry rate equals the flow capacity of the bottleneck over the

connected departure interval, with the timing of the rush hour such that the time early cost

of the first commuter to depart equals the time late cost of the last commuter to depart.

If one were to measure the marginal social cost of a commuter at time t as the increase in

total social costs from adding a commuter at that time, holding fixed the departure times of

all other commuters, evaluated at the social optimum, one would obtain the wrong answer.

Adding a commuter at the start of the rush hour would generate a queue of length one for

the duration of the rush hour, whereas adding a commuter at the end of the rush hour would

generate no queue. Since the time early cost of the first commuter equals the time late cost

of the last commuter, one would incorrectly calculate the marginal social cost at the start
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of the rush hour to be higher than the marginal social cost at the end of the rush hour. The

error arises because the technology of congestion in the bottleneck model is not smooth, so

that the Envelope Theorem does not apply.

A similar problem arises when calculating the marginal social cost of a trip in the basic

bathtub model with α-β-γ tastes. We shall start off by arguing that the marginal social cost

of a trip is correctly calculated by holding fixed the size of each commuter’s departure mass

and adjusting the timing of the departure masses such that a departure mass arrives at the

desired arrival time. Having established this, the analysis proceeds routinely.

Theorem 1. With α-β-γ tastes, if there is a social optimum for which the desired arrival

time is not a primary breakpoint, there is another social optimum with the same total travel

cost for which the desired arrival time is a primary breakpoint.

Proof. Consider a social optimum for which the desired arrival time is not a primary break-

point. Let Ne denote the number of commuters in this social optimum who arrive strictly

early and Nl denote the number of commuters who arrive strictly late. Since there is no

departure mass that arrives on time, Ne + Nl = N , where N is the exogenous population.

Delaying departures of all commuters by dt decreases the total time early cost of all early

commuters by βNe dt, increases the total time late cost of all late commuters by γNl, and has

no effect on total travel time cost. Similarly, bringing forward departures of all commuters

by dt increases the total time early costs by βNe dt, decreases the total time late cost of all

late commuters by γNl dt, and has no effect on total travel time cost. Thus, a necessary

condition for a social optimum for which the desired arrival time is not a primary breakpoint

is that βNe = γNl. But when this condition holds, delaying departures of all commuters

by a sufficient amount that the arrival of the latest early departure mass coincides with the

desired arrival time has no effect on total travel cost.

In what follows we restrict our attention to social optima for which the desired arrival

time is a primary breakpoint.

Let i = −I, . . . ,−1, 0,+1, . . . , I denote departure masses, from the earliest to the latest,

with some departure masses at the tails possibly being empty/inactive, and with i = 0
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corresponding to the departure mass that exits immediately before the desired arrival time.

The number of commuters in mass i is ki; the trip duration of commuters in mass i is T (ki);

the time early for commuters in mass i, i = −I, . . . ,−1 is
∑0

j=i+1 T (kj); the time early for

commuters in mass 0 is zero; and the time late for commuters in mass i, i = 1, . . . , I, is
∑i

j=1 T (kj). Total travel costs, TTC, are therefore

TTC = α

I∑

i=−I

kiT (ki) + β
−1∑

i=−I


ki

0∑

j=i+1

T (kj)


+ γ

I∑

i=1


ki

i∑

j=1

T (kj)


 . (16)

Travel in mass i is congested if d
(
ki v(ki)

)
/ dki > 0 ⇔ v(ki) + ki v

′(ki) > 0 and hypercon-

gested if the inequalities are reversed. Since the trip duration for mass i is T (ki) = L/v(ki),

traffic in mass i is congested if T (ki) − ki T
′(ki) > 0, or equivalently when the elasticity of

trip duration with respect to density is less than one. Traffic in mass i is hypercongested

when the last inequality is reversed. The size of the departure masses are chosen to minimize

TTC subject to the population constraint that
∑I

i=−I ki = N and non-negativity constraints

on the ki, ki ≥ 0. Traffic density should also be (strictly) lower than jam capacity, ki < kj,

but this constraint can be ignored as long as we focus on an interior solution with positive

traffic flow and velocity. Thus, the minimization problem is





min
k−I ,...,kI

α
I∑

i=−I

kiT (ki) + β
−1∑

i=−I


ki

0∑

j=i+1

T (kj)


+ γ

I∑

i=1

ki




i∑

j=1

T (kj)




s.t.
I∑

i=−I

ki ≥ N and ki ≥ 0 for i = −I, . . . , 0, . . . , I.

(17)

The corresponding Lagrangian is L = α
∑I

i=−I kiT (ki) + β
∑−1

i=−I

(
ki
∑0

j=i+1 T (kj)
)
+

γ
∑I

i=1 ki

(∑i
j=1 T (kj)

)
+λ

(
N −∑I

i=−I ki

)
where λ is the Lagrange multiplier coorespond-

ing the population constraint. The necessary conditions state that (i) for each ki, i =

−I, . . . , I, we have ∂L /∂ki ≥ 0, ki ≥ 0 and the complementary slackness (CS) condition,

i.e. ki · ∂L /∂ki = 0; and (ii) that N −∑I
i=−I ki ≤ 0, λ ≥ 0 and λ

(
N −∑I

i=−I ki

)
= 0.

By differentiating the Lagrangian, we state the necessary condition for the three groups of
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masses (early arrivals, on time arrival and late arrivals, respectively). For i = −I, . . . ,−1
we have

α[kiT
′(ki) + T (ki)] + β

0∑

j=i+1

T (kj) + β T ′(ki)
i−1∑

j=−I

kj ≥ λ, (18a)

with ki ≥ 0 and CS condition. For i = 0, we have

α[kiT
′(ki) + T (ki)] + β T ′(ki)

−1∑

j=−I

kj ≥ λ (18b)

with ki ≥ 0 and CS condition. For i = 1, . . . , I, we have

α[kiT
′(ki) + T (ki)] + γ

i∑

j=1

T (kj) + γ T ′(ki)
I∑

j=i

kj ≥ λ (18c)

with ki ≥ 0 and CS condition. Equation (18a) identifies three elements of the marginal social

cost of a commuter in early departure masses: the direct cost associated with her travel,

αT (ki) + β
∑0

j=i+1 T (kj), the congestion externality cost she imposes on commuters in the

same departure mass, and the schedule delay externality cost she imposes on commuters in

earlier departure masses by causing them to depart earlier. Equation (18b) is the same as

(18a), except that commuters in this mass arrive on time. Equation (18c) is the same as

(18a), except that it applies to late departure masses, for which the schedule delay externality

cost derives from the added commuter causing those to depart in her departure mass and

later departure masses to arrive later.

Restricting the analysis to social optima for which the desired arrival time is a primary

breakpoint makes the analysis easier. The first-order conditions for early and on time arrivals,

(18a) and (18b), do not contain any terms related to the size of late departure masses, and

the first-order conditions for late arrivals, (18c), do not contain any terms related to the size

of early and on time departure masses. This points to a natural separability in the travel

cost minimization problem between early/on time arrivals and late arrivals. In our analysis,

we shall exploit this separability in two ways:

37



1. Obtain properties of the social optimum by: (i) Deriving relationships between the

sizes of the early and on time departure masses based on their marginal social costs

being the same; (ii) doing the same for late departure masses; and (iii) linking early/on

time arrivals and late arrivals by imposing the condition that the marginal social cost

of travel in the on time arrival mass is that same as that for the first late departure

mass.

2. Imagine that the social optimum problem has been solved, including the division of

the population between early/on time arrivals and late arrivals, as given. Taking the

population of early and on time arrivals as fixed at their optimal levels, minimize the

total travel costs of this sub-population, and then proceed analogously for late arrivals.

We first examine properties of the earliest active departure mass when α > β. We

start with early arrivals; Properties of late arrivals are examined in Appendix A.1. Let −D
denote the index of the earliest “active” departure mass, so that there are no departures for

i = −I, . . . ,−D− 1. At the optimum, the marginal social cost of departure in mass −D− 1

must be greater than or equal to the marginal social cost of departure in mass −D, which

implies that

α[k−D−1T
′(k−D−1) + T (k−D−1)] + β

0∑

−D

T (kj) + β
−D−2∑

j=−I

kjT
′(k−D−1)

≥ α[k−DT
′(k−D) + T (k−D)] + β

0∑

−D+1

T (kj) + β
−D−1∑

j=−I

kjT
′(k−D)

Now, ki = 0 for i = −I, . . . ,−D − 1. Also, T (k−D−1) = Tf , where Tf is trip duration at

free-flow travel speed. Using these results, the above inequality reduces to

αTf + β
0∑

j=−D

T (kj) ≥ α[k−DT
′(k−D) + T (k−D)] + β

0∑

j=−D+1

T (kj).
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Eliminating common terms, this inequality reduces to

0 ≥ α[k−DT
′(k−D) + T (k−D)− Tf ]− βT (k−D) =

α[k−DT
′(k−D) − Tf ] + (α − β)T (k−D). (19)

Adding a commuter to mass −D − 1 rather than −D increases total schedule delay cost by

βT (k−D) but decreases total social travel time costs by α[k−DT
′(k−D) + T (k−D) − Tf ]. At

the optimum, the former must weakly exceed the latter.

Lemma 1. With α-β-γ tastes, if α > β, then in the social optimum the earliest active

departure mass is congested rather than hypercongested.

Proof. Since α > β, (19) implies that α
(
k−DT

′(k−D) − Tf

)
< 0. From the definition of

hypercongestion, if the earliest departure mass were hypercongested, then k−DT
′(k−D) >

T (k−D) > Tf , establishing a contradiction.

We now consider the relationship between congestion in contiguous early departure

masses. The marginal social costs of departures in masses −D to 0 are equal. For suc-

cessive early, and active, departure masses, it follows that

α
[
kiT

′(ki) + T (ki)
]
+ β

0∑

j=i+1

T (kj) + β
i−1∑

j=−I

kjT
′(ki)

= α
[
ki+1T

′(ki+1) + T (ki+1)
]
+ β

0∑

j=i+2

T (kj) + β
i∑

j=−I

kjT
′(ki+1) (20)

Eliminating common terms yields

α
[
kiT

′(ki) + T (ki)
]
+ βT (ki+1) + β

i−1∑

j=−I

kjT
′(ki)

= α
[
ki+1T

′(ki+1) + T (ki+1)
]
+ β

i∑

j=−I

kjT
′(ki+1) (21)
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After some rearrangement, (21) reduces to

[
α
(
T (ki+1)− T (ki)

)
− βT (ki+1)

]
+ α

[
ki+1T

′(ki+1)− kiT
′(ki)

]

+ β
(
T ′(ki+1) − T ′(ki)

) i−1∑

j=−I

kj + βT ′(ki+1)ki = 0. (22)

Consider transferring a commuter from mass i to mass i + 1. This causes her private

travel cost to change by α(T (ki+1) − T (ki)) − βT (ki+1), the travel time externality cost

she imposes on other commuters by α(ki+1T
′(ki+1) − kiT

′(ki)), the schedule delay exter-

nality cost she imposes on commuters in earlier ( j = −I to i − 1) departure masses by

β
(
T ′(ki+1)− T ′(ki)

)∑i−1
j=−I kj, and increases the schedule delay externality cost she imposes

on commuters in departure mass i by βT ′(ki+1)ki.

For future reference, we rearrange (22) to give

(α− β)
[(
T (ki+1) + ki+1T

′(ki+1)
)
−
(
T (ki) + kiT

′(ki)
)]

+ β
[
ki+1T

′(ki+1)− T (ki)
]
+ β


(T ′(ki+1)− T ′(ki)

) i∑

j=−I

kj


 = 0. (23)

Lemma 2. With α-β-γ tastes, if α > β, then all early departure masses are congested rather

than hypercongested

Proof. Suppose that mass i is congested and mass i+1 is hypercongested. Then each of the

terms within square brackets on the LHS of (23) would be strictly positive, establishing a

contradiction. Since mass−D is congested rather than hypercongested, this result establishes

that mass −D+ 1 must be congested rather than hypercongested, and by recursion that all

early departure masses must be congested rather than hypercongested.

Lemma 3. With α-β-γ tastes, if α > β, then in the social optimum later early departure

masses are more congested.

Proof. Suppose the contrary. Then it would have to be the case for some i that mass i + 1

is less congested than mass i. Then each of the terms within square brackets (23) would be
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strictly negative, establishing a contradiction (the middle term would be negative since, by

Lemma 2, T (ki) > ki T
′(ki) and ki T

′(ki) > ki+1T
′(ki+1)).

The results of Lemmas 1, 2 and 3 are brought together in

Proposition 1. With α-β-γ tastes, if α > β, then in the social optimum all early departure

masses are congested rather than hypercongested, and, among early departure masses, later

masses are more congested.

The case α < β is more complex. To gain some insight into it, we consider an extreme

and simple example; it is extreme in that α = 0, and it is simple in that trip distance equals

unity and the normalized Greenshields’ Relation holds, so that T (k) = (1− k)−1.

Recall that the full social optimum can be derived by solving separately for the early

morning and late morning rush hours, taking as fixed the optimal division of the population

between early/on time and late arrivals. Let n denote the optimal early/on time population.

Consider how the optimum evolves at n increases. Up to n = 1, all commuters travel in the

departure mass that arrives on time: k0 = n. As n increases from zero, a commuter’s trip

duration increases from free-flow trip duration up to infinite trip duration, but this does not

affect total travel time costs since the value of travel time equals zero. Total schedule delay

costs are zero since all commuters arrive on time, so that marginal social cost is zero for

n ∈ (0, 1). As n rises above 1, since it is not possible to accommodate the entire early/on

time population in a single departure mass, a second early departure mass is formed. Since

commuters in mass 0 arrive on time, total time early costs are minimized by minimizing

the total time early costs of commuters in mass −1. Reducing the number of commuters

in mass 0 increases the number of commuters in mass −1 but also reduces the time early

cost each experiences. Each commuter in mass −1 experiences time early equal to the travel

time in mass zero, which is (1− k0)
−1 = (1− (n− k−1))

−1. Thus, the total time early cost of

commuters in mass −1 is βk−1(1−n+k−1)
−1. The derivative of this expression with respect

to k−1 is −β(n−1)(1−n+k−1)
−2 < 0. Thus, the total time early cost of commuters in mass

−1 is minimized by making k−1 being as large as possible, consistent with the constraints

imposed by the congestion technology that departure masses cannot be negative and cannot
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be greater than 1. Total time early cost of commuters in mass −1 is therefore minimized

by setting k−1 = 1. Thus, at n = 1+, all the population switches from mass 0 to mass −1,
and as the population increases the increase goes to mass 0. As the population continues

to rise, a critical population is reached at which it becomes optimal to form a third early

departure mass, with mass −2 having a unit population, and the residual population being

divided across masses 0 and −1 such that their marginal social costs are equalized. And so

on. The phenomenon whereby the earliest departure mass has traffic density equal to jam

density is termed extreme hypercongestion.

We highlight this result in

Proposition 2. With α-β-γ tastes and with Greenshields’ Relation, when α = 0 and n > 1,

the earliest departure mass exhibits extreme hypercongestion.

Proposition 2 covers only an extreme case. When α > 0, extreme hypercongestion does

not occur in the social optimum since travel time costs are given weight in total trip costs.

Nevertheless, hypercongestion does occur in the social optimum for a range of parameter

values that are not unreasonable.21

We have also established

Proposition 3. With α-β-γ tastes, in the social optimum all late departure masses are

congested rather than hypercongested and, among late departure masses, earlier departure

masses are more congested.

The proof is provided in Appendix A.1, and follows a logic similar to that used to prove

Proposition 1.

Proposition 4. In the social optimum with α-β-γ tastes, with α > β, the central departure

mass is the most congested.

The proof is provided in Appendix A.2, and follows a logic similar to that used to prove

the other Propositions.

Drawing together the results of Propositions 1, 3 and 4 gives

21We omit analysis of the intermediate situation in which α ∈ (0, β) because of its complexity.
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Proposition 5. In the social optimum with α-β-γ tastes, with α > β, all the departure

masses are congested rather than hypercongested. In both the early and late morning rush

hours, more central departure masses are more congested, with the central departure mass

being the most congested.

All of these results are predicated on the conjecture that, with α-β-γ tastes, the social

optimum takes the form of a succession of contiguous departure masses, with the central

departure mass arriving exactly on time. Now is a good time to consider the validity of

this conjecture. With α-β-γ tastes, there is a kink point in the indifference curves at the

desired arrival time, t∗, which generates a social benefit from having a mass of commuters

arriving at the desired arrival time. This benefit does not arise if departures are continuous

over the rush hour. But because the congestion technology is convex, there is also a social

cost associated with having departures occur in contiguous departure masses rather than

continuously. Is it not possible that the relative size of the social cost and social benefit

depends on parameter values?

To address this question, the solution algorithm of Section 3, which does not assume

that the social optimum takes the form of contiguous departure masses, was applied to solve

numerically for the social optimum with α-β-γ tastes for a wide variety of parameter sets.

In all the examples, the optimum entailed contiguous departure masses. Thus, it remains

an open issue as to whether, with α-β-γ tastes, the restricted social optimum is always the

global optimum.

4.2 A Numerical Method to Solve for the Social Optimum

As indicated earlier, Arnott et al. (2016) made some progress in solving analytically for the

social optimum in the bathtub model with α-β-γ tastes and under Greenshields’ Relation.

They conjectured but did not succeed in proving that departures occur only in contiguous

masses, each occurring at a primary breakpoint, with the exit of one departure mass followed

immediately by the entry of another departure mass, and with the common desired arrival

time being one of the breakpoints. If this conjecture is correct, then a considerably simpler
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numerical method can be developed for this case than for the case of a smooth and strictly

concave utility function.

The way we proceeded was to apply two solution methods. The first is the method of the

previous section. The second is a method that builds on the conjecture. We first describe

the logic underlying its construction, and then the algorithm.

Consider a velocity relationship with a jam density kj. The optimum number of departure

masses must therefore strictly exceed the integer portion of N/kj. As well, we know from

Proposition A2 that, if α > β, hypercongestion does not occur in the social optimum, so that

the density of cars on the street system never exceeds a given proportion ρ of jam capacity.

The optimum number of masses must therefore strictly exceed N/(ρ kj). If there is only one

departure mass, it must depart early and arrive exactly on time. Now consider adding a

second departure mass. The added departure mass may either depart early and arrive at

the time that the “central” departure mass departs, or depart immediately after the central

mass arrives and arrive late. Solve for the optimum for both configurations, and choose the

one that minimizes total costs. Proceed in an analogous way as more departure masses are

added.

The issues then arise as to how an exogenous population of commuters should be allocated

across a given configuration of departure masses so as to minimize total costs, and to when

an additional departure mass should be added. We turn first to the former issue. The

exogenous population should be allocated across a given configuration of departure masses

so as to equalize the marginal social cost of an adding a commuter to each departure mass.

How the marginal social cost of adding a commuter to each departure mass is calculated was

shown in section 4.1.

Determining the optimal number of departure masses is an integer problem. Considering

that the optimal number of departure masses is unlikely to be large, if the aim is to solve

for the optimum for a particular N , the simplest numerical method is likely to be just

straightforward comparison of total travel cost for the various configurations of early and late

departure masses, with the minimum number of departure masses exceeding N/(ρ kj). An

44



obvious conjecture that we have not proved is that: Starting with the optimal configuration

conditional on the number of departure masses equaling N/(ρ kj) + 1, and adding departure

masses one by one, if adding a departure mass on the early side of the morning rush hour

increases total travel costs and if adding a departure mass on the late side of the morning

rush hour increases total travel costs, then the optimum configuration has been found.

The algorithm is constructed in accordance with the above logic. Basically, one may

consider two loops, an inner one and an outer one. The inner loop solves for the optimal

allocation of commuters over departure masses conditional on the number of early and late

departure masses. The outer loop solves for the optimal number and configuration of depar-

ture masses. But, it is possible to remove the outer loop and consider, instead, a relatively

large value of I (the number of early and late arrival masses). By allocating optimally the

population to equalize the marginal social costs among all used masses, i.e. minimizing the

aggregate social cost, there will be no commuters in some masses that are on the edges

(masses on both edges will not be active). Thus if the inner loop works efficiently, the outer

loop can be disregarded. For the inner loop we may proceed directly by solving the nonlin-

ear programming problem in (17). Doing so, however, does not exploit the properties of the

problem discussed above. It is preferable to solve the system of nonlinear equations given

in (18) instead. This requires particular care of the nonegativity constraints on decision

variables ki.

We proceed as follows. Let the total number of commuters N be given. Start with a very

small number of commuters N . The optimal solution will be k0 = N and ki = 0 for the all

the other masses. The marginal social cost of mass i = 0 in this case is α[NT ′(N) + T (N)]

which should be smaller than the marginal social cost of mass -1 and mass 1. As the value

of N increases, a population threshold, N1, is reached at which it becomes optimal to add

a second departure mass, either departure mass −1 or departure mass 1. Suppose that it

becomes optimal to add departure mass −1. From (18a), the marginal social cost of mass

-1 (when k−1 = 0) is αT (0) + βT (N). From (18c), the marginal social cost of mass 1 (when

k1 = 0) is αT (0) + γT (0), which does not depend on N . Let N1 be the value of N where
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the marginal social costs of masses 0 and -1 or 0 and 1 are equal. For N > N1 the optimum

solution involves two masses at least, and N slightly higher than N1 there are exactly two

active masses. The optimum allocation is then found by solving a system of two nonlinear

equations with two unknowns. For numerical requirement k0 = N and k−1 = 0 can be used

as a starting point for the computation.

By increasing again the value of N we can compute the optimum allocation of commuters.

At each step we can check that the solution remains optimal by comparing the marginal social

cost of the two active masses -1 and 0 with those corresponding to masses -2 and mass 1.

Nonactive masses should have higher marginal social costs; otherwise it is optimal to allocate

commuters there. This shows how the next threshold N2 can be found. The procedure can

be continued as long as N is smaller than N . For the numerical implementation there are

several algorithms to solve the system of nonlinear equations. Since we have a good guess of

a starting point, as mentioned above, and since the optimum problem usually yields a well

behaved solution we have used a Newton algorithm which insures quadratic convergence.

Our algorithm worked efficiently for the several examples we have tested.

This algorithm has an additional advantage: it can be quickly tuned to solve numerically

for the equilibrium. The main required change is to replace the marginal social cost with

the marginal private cost. But, since the equilibrium solutions involve higher congestion we

had to increase N by a smaller amount compared to the optimum. Otherwise, the Newton

procedure may not converge.

4.3 A Discussion of a Numerical Example

The computation of the optimum with α-β-γ preferences follows our description in Sec-

tion 4.2. For the numerical illustration, travel time cost is set to α = 10 $/h, early arrival

cost is set to β = 8 $/h and late arrival cost to γ = 15 $/h. Jam density is kj = 6, free-flow

velocity is vf = 15 mph and travel distance is L = 5. These values are comparable to those

used in Arnott et al. (2016). For velocity, we use vf (k) = vf (1 − k/kj)/(1 + 3k/kj) which

yields maximum traffic flow at one third of jam capacity.
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Figure 10 illustrates the traffic densities and cumulative entries for the optimum and the

equilibrium, both computed on the basis of a population size N = 18. The optimum is

obtained with fourteen departure masses, eight arriving early and five arriving late. Since

each mass enters immediately after the one before exits, the mass sizes can be observed and

compared easily in the left panel that displays traffic densities. For the optimum, the size of

the masses is increasing until the central one, the one that arrives on time, and then decreases

at a higher speed since commuters prefer early to late arrivals. From the cumulative entries

curve (right panel), we observe that about 60% of the commuters arrive early, 30% arrive late

and the remaining 10% are in the central mass and arrive on time. The first mass departs

four hours (t = −5.084) before the preferred arrival time (set to 0 in this example) and the

latest arrival occurs at 2.802, so the rush hour is about six hours long. The travel speed,

which is decreasing with traffic density, falls to 5.56 mph for the central mass.

The equilibrium exhibits a clearly distinct dynamic. The rush hour is about three times

longer, starts at more than ten hours before the desired arrival time and ends more five hours

after. Traffic density quickly increases to get close to jam capacity, significantly decreasing

travel speed to less than 0.5 mph for the central mass. There are only six masses, two

arriving early and three arriving late. This contrasts with the social optimum, in which

there are more departure masses and a higher proportion of the population arrives early. At

equilibrium, only 21% of the population arrive early and 50% arrive late. The central mass

is overused with a very low travel speed and a long travel time. Thus, masses that depart

earlier incur a high schedule penalty that can be reduced by departing later.

Changing the parameter values will change the magnitudes of the mass sizes, but the

output will remain qualitatively similar. For instance, if for the same example the values of

α and β are switched the number of masses decreases to twelve. This impact is intuitively

clear since smaller α reduces the user cost of travel time relative to the penalty of arriving

earlier.

For the optimum, the average user cost in this example is equal to $ 25.13, composed

of travel time cost ($ 6.07), early arrival cost ($ 12.54) and late arrival cost ($ 6.52). The
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Figure 10: Traffic density (left panel) and cumulative entries (right panel) for the social
optimum and the equilibrium with N = 18. Parameter values are kj = 6, vf = 15, L = 4
and t∗ = 0; α = 10, β = 8 and γ = 15. Velocity is given by v(k) = vf (1− k/kj)/(1+ 3k/kj).

marginal social cost at the optimum is equal to $ 44.76; and the difference from the average

user cost is the average external cost. The proportion of early arrival cost may seem too

high, but at the optimum the external costs also matter. In the case under consideration,

early arrivals produce moderate external costs in comparison to late arrivals, and also in

comparison to trip durations. At the optimum, the aggregate cost is minimized when there

are more masses (and commuters) arriving early than masses arriving late. At equilibrium,

equal user costs yield more commuters arriving on time. This increases external costs through

an increase in early arrival times, for masses departing earlier, and an increase in the trip

duration, for commuters in the same mass. To compensate for the larger schedule delay cost

from arriving too early, more commuters choose masses arriving late. In this example, the

user cost at equilibrium is $ 86.05, composed of travel time cost ($ 40.13), early arrival cost

($ 15.10) and late arrival cost ($ 30.81).

It is interesting to compare the equilibrium and the optimum for several population sizes.

Average user cost and marginal social cost for the equilibrium and the optimum, as functions

of the population size, are given in Figure 11. To construct these curves we start from a

small value of the user cost and then find the corresponding population size. In the next

step, we increase the user cost by a small value and find the corresponding population size.
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Figure 11: User cost (thick lines) and marginal social costs (thin lines) for the equilibrium
(superscript “e”) and the optimum (superscript “o”). The dots are located where new active
masses are created. Parameter values are kj = 6, vf = 15, L = 4 and t∗ = 0; α = 10, β = 8
and γ = 15 (the same as in Fig. 10).

This iteration is repeated until a predefined limit size of the population is reached. It is clear

that the user cost and the social marginal cost are significantly higher at the equilibrium.

For very small values of N , in both the equilibrium and the optimum all commuters travel

in the central departure mass, so that the equilibrium and optimum user cost are the same,

as are the equilibrium and optimum marginal social cost. But, as N increases the curves

corresponding to the equilibrium increase much faster than those corresponding to the opti-

mum. The latter exhibit a rather linear form reflecting an optimal trade-off in the allocation

of users between new masses (with high schedule delays) and central masses where traffic

density never reaches the hypercongestion threshold (kj/3 in the formulation of velocity used

to develop this example). The user cost corresponding to the equilibrium has kinks located

where new masses become active. This induces discontinuities in the social marginal cost

curve. Shortly after a new mass becomes active, the social marginal cost decreases because

the magnitude of the external cost (congestion/hypercongestion) is smaller. At the opti-

mum, the number of new active masses increases faster than for the equilibrium. A second

49



mass becomes active at N = 0.78 for the optimum, while is occurs at N = 1.64 for the

equilibrium. With N = 30, there are only 8 active masses in equilibrium, while the optimum

number is 21. By creating a new mass, the user cost increases linearly, mainly through the

schedule delay part since distinct masses do not overlap in traffic, while increasing the size

of a given mass significantly and nonlinearly increases the user cost. Indeed, velocity drops

near zero when traffic density gets close to jam capacity.

Notice that, in contrast to the smooth utility functions used in Section 3.3, the user cost

corresponding to the equilibrium is monotonically increasing and is not backward bending.

For each population size we obtain a unique equilibrium.22 Indeed, with α-β-γ tastes the

rush hour distance is not bounded above, as it is with logarithmic utility function, and an

equilibrium exists for any population size.

We examined several other examples with different velocity functions, and different pa-

rameters for each of the functions. With smooth velocity functions, our algorithms worked

well and generated the same qualitative results. With non-smooth velocity functions, such

as those associated with the triangular or trapezoidal fundamental diagrams, our algorithm

did not work. However, with the triangular or trapezoidal fundamental diagrams, putting

aside the complication that the number of masses is integer, the social optima can be derived

from first principles. In both cases, the social optimum entails all cars traveling at free-flow

velocity, with the density of departure masses chosen to maximize flow consistent with this

velocity. Total trip cost equals the sum of total travel time cost and total schedule delay

cost. Total travel time cost is minimized when all commuters travel at free-flow velocity.

Total schedule delay cost is minimized when flow is at its maximum, and, with both early

and late departures, when the time early cost of the first commuter to depart equals the time

late cost of the last commuter to depart. With the triangular of trapezoidal fundamental

diagrams both minimums can be achieved simultaneously.

22To check this output we increased the population size above one thousand and the user cost curve kept
the same structure.
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5 Concluding Remarks

This paper undertook a preliminary investigation of the social optimum in the basic bathtub

model (with endogenous trip timing). A fixed population N of ex ante identical commuters

per unit area must travel a fixed distance on a dense network of streets from home to work

over the morning rush hour. The common travel utility function is U(t, T ), where t is

departure time and T is trip duration. Traffic congestion is described by a dynamic MFD,

generated by assuming that traffic velocity at a point in time is inversely proportional to

traffic density at that point in time. The social optimum problem is to choose the departure

rate function to maximize social welfare, the sum of money-metric travel utilities, per unit

area, or equivalently to minimize the total social costs of travel per unit area.

This problem is of interest for several reasons.

1. The standard treatment of the social optimum with endogenous trip timing uses

William Vickrey’s bottleneck model (1969). The bathtub model with endogenous trip

timing improves on the bottleneck model by incorporating space, allowing for trips

of different distances, and accommodating hypercongestion – travel on the backward-

bending portion of the dynamic MFD.

2. The bathtub model provides a stepping stone towards more realistic models of the

spatial dynamics of traffic congestion in metropolitan areas, for example of the equilib-

rium dynamics of traffic congestion along a corridor joining residential and workplace

locations.

3. Enriched with realistic detail, such models would provide the conceptual basis for

more sophisticated congestion pricing schemes, and, where there are constraints on

congestion pricing, for the design of second-best mass transit and land use policies to

mitigate traffic congestion.

Unfortunately, even the basic bathtub model with endogenous trip timing gives rise to

delay-differential equations that make formal analysis difficult. The literature has responded
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by considering approximations, focusing on special cases, and undertaking simulations. Ap-

proximations are more persuasive when the exact solution is known, either through formal

analysis or through simulation. This paper undertook some preliminary formal analysis and

developed solution algorithms that, in the limit, as the time steps shrink, give exact solutions.

The paper focused on two classes of tastes. In the first, commuter travel utility is a

smooth and strictly concave function of departure time and trip duration. By exploiting

some mathematical properties of the problem and using distance into the rush hour rather

than time as the running variable, the algorithm developed to solve for social optima worked

well. The numerical examples considered employed two smooth and strictly concave travel

utility functions, (13) and (14), which derive from the specification of scheduling preferences

in Vickrey (1973), in which the commuter trades off the conflicting desires to leave home

later and to arrive at work earlier. In all the examples, hypercongestion does not arise and

traffic density and speed evolve continuously over the rush hour but with discontinuities in

the entry and exit rates at breakpoints. Unfortunately, little progress was made in analytical

derivation of properties of the social optimum. Since the congestion externalities imposed

by the each commuter are so spatially diffuse, it is difficult to exploit the social optimum

property that the marginal social cost of all commuters is the same.

In the second class of tastes, commuter travel utility is represented by α-β-γ tastes, which

are often assumed in the bottleneck model. On the assumption that the social optimum

entails contiguous departure masses, good progress was made in analytical derivation of the

properties of the social optimum. If α > β: Hypercongestion never occurs. Since one of the

departure masses arrives on time, most properties of the early morning rush hour may be

derived independently of the late morning rush hour, and vice versa. In the early morning

rush hour, later departure masses are more congested, and in the late morning rush hour,

later departure masses are less congested, with the departure mass that arrives on time being

the most congested. Utility has an inverse U -shape over the rush hour, with the commuters

in the on time departure mass having the highest utility. An even simpler solution algorithm

was developed for this case, which also worked well. If α < β, the spatial dynamics can
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become complex and hypercongestion can occur.

The differences in the numerical examples for the social optimum with smooth and strictly

concave utility functions compared to those with α-β-γ tastes are stark. What account for

them?

We do not have a complete explanation. We do, however have two conjectures.

1. In the previous section it was argued that, with α-β-γ tastes, the social benefit from

having contiguous departure masses derives from the kink point in the schedule delay

cost at t∗, the desired arrival time. Since strictly concave utility functions do not

exhibit this kink point, this benefit is absent. This leads to the conjecture that a

departure pattern with only contiguous departure masses does not occur with strictly

concave utility functions.

2. In the previous section, it was proved that, with α-β-γ tastes, a necessary condition

for hypercongestion to occur at the beginning of the rush hour is that β > α. Now

turn to (14). Making the transformation of variables, a = t+ T , it can be written as

û(a, T ) =
A0

a1

(
1− e−a1(a−T )

)
+

B0

b1

(
1− e−b1(t#−a)

)

The marginal cost of travel time is −∂û(a, T )/∂T , while the marginal cost of time early

is ∂û(a, T )/∂a. It is straightforward to show that for early arrivals the marginal cost of

travel time exceeds the marginal cost of time early. This leads to the conjecture that

hypercongestion at the very beginning of the rush hour does not occur with a utility

function of the form (14) (the same argument applies with a utility function of the

form (13)).

The following example is consistent with these two conjectures. Consider the utility

function

U = −αT − β (t∗ − a)2. (24)
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Figure 12: An illustration of hypercongestion with a continuous utility function. Green-
shields’ Relation is assumed for the congestion function, and the following parameter values
as assumed: α = 1.0, β = 1.0, kj = 1.0, vf = 15.0, t∗ = 3.0, L = 1.0 and N = 10.

It exhibits constant marginal disutility of travel time and increasing marginal disutility of

schedule delay. It is smooth and strictly concave. At peak times in the early morning rush

hour, the marginal disutility of travel time exceeds the marginal disutility of time early; in

the early morning shoulder of the rush hour, however, the marginal disutility of time early

can exceed the marginal disutility of travel time. The results for the social optimum for a

particular numerical example are displayed in Figure 12. At first glance, they appear bizarre.

But they can be rationalized if the above two conjectures are correct. That departures do

not all occur in contiguous departure masses is consistent with the first conjecture. Also,
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since at the start of the rush hour the marginal disutility of time early exceeds the marginal

disutility of travel time, that hypercongestion occurs at the very beginning of the rush hour

is consistent with the second conjecture.

This example suggests that there is a wide range of qualitative departure patterns. More

work is needed to understand which occurs.

The basic bathtub has considerable conceptual appeal. It checks off virtually all the

boxes in terms of what one wants in a sound basic model of rush hour traffic dynamics

that can be built on to develop a rich theory of the spatial dynamics of traffic congestion

in a metropolitan area. It is discouraging that such an appealing model gives rise to such

complicated mathematics and has such complex solution properties. It would be a mistake,

however, to give up on the proper bathtub model because of these difficulties. Many papers

in the current literature circumvent them by making approximations, the most common

of which makes the arrival rate proportional to traffic flow.23 It may turn out that some

of these approximations simplify analysis and computation considerably without seriously

compromising the properties of the bathtub model proper. But to determine this requires

a reference point against which to evaluate the soundness of the approximations, and the

exact solution is the appropriate reference point.
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Appendix A Complementary Material to Section 4

A.1 Late Arrivals

We examine the properties of late departure masses. Late and early arrivals differ in three

ways. First, and most obviously, it is typically assumed, based on empirical evidence, that

the value of time late is higher than the value of time early (γ > β); second, while there is

always an early departure mass – mass 0, which arrives at the common desired arrival time,

there may not be a late departure mass; and third, a commuter in the earliest departure

mass does not impose a schedule delay externality but a commuter in the latest departure

mass does.

Proposition A1. With α-β-γ tastes, in the social optimum all late departure masses are

congested rather than hypercongested, and, among late departure masses, earlier masses are

more congested.

Proof. From (18c), the condition that the marginal social cost of a commuter who departs

immediately after the last active departure mass arrives is weakly higher than the marginal

social cost of the last active departure mass, D, is24

(α + γ)Tf ≥ (α + γ)kDT
′(kD) + αT (kD). (25)

This condition establishes that the last departure mass is congested rather than hypercon-

gested. A new departure mass is formed when population rises to that level at which (25)

holds with equality.25

From (18c), for i = 1, . . . , D, the marginal social cost of a commuter who departs in mass

24If mass D is hypercongested, (25) cannot hold since αT (kD) is positive and kDT ′(kD) > T (kD) > Tf .
Also, notice that to reduce notation we have used −D to denote the first active mass and D to denote the
last active mass. In general active masses are not symmetric with respect to the central mass (mass 0).

25For example, when γ = 2α, which is often assumed in numerical examples, and when congestion is
described by Greenshields’ Relation with vf = kj = 1 (normalizations), a new departure mass is formed
when kD = 0.2792.

58



i− 1 must be the same as that of a commuter who departs in mass i:

α
[
ki−1T

′(ki−1) + T (ki−1)
]
+ γ

i−1∑

i=1

T (kj) + γ T ′(ki−1)
I∑

j=i−1

kj

= α
[
kiT

′(ki) + T (ki)
]
+ γ

i∑

j=1

T (kj) + γ T ′(ki)
I∑

j=i

kj, (26a)

which, after the elimination of common terms, reduces to

α
[
ki−1T

′(ki−1) + T (ki−1)
]
+ γ T ′(ki−1)

I∑

j=i−1

kj

= α
[
kiT

′(ki) + T (ki)
]
+ γ T (ki) + γ T ′(ki)

I∑

j=i

kj, (26b)

which can be rewritten as

α
[
ki−1T

′(ki−1) + T (ki−1)
]
+ γ T ′(ki−1)

I∑

j=i

kj

− α
[
kiT

′(ki) + T (ki)
]
− γ T ′(ki)

I∑

j=i

kj = γ
[
T (ki)− kiT

′(ki−1)
]
. (26c)

Consider i = D. Suppose that departure mass D − 1 is less congested than mass D. Then

the LHS of (26c) is negative. But since mass D is congested rather than hypercongested

and since mass D − 1 is less congested than mass D, then the RHS of (26c) is positive,

which establishes a contradiction. Hence, mass D− 1 is more congested than mass D. Then

since the RHS is positive and since mass D− 1 is more congested than mass D, mass D− 1

is congested rather than hypercongested. Applying the argument recursively establishes

that all late departure masses are congested rather than hypercongested, and that, among

departure masses that arrive late, more central departure masses are more congested.

We show in Appendix A.2 (Proposition A3) that the central mass is the most congested.

We bring together some of the above results in
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Proposition A2. With α-β-γ tastes, if α > β, hypercongestion does not occur in the social

optimum, and more central departure masses are more congested.

It follows from the above proofs that, if α > β, in the social optimum both the congestion

externality cost and the schedule delay externality cost are higher for more central departure

masses. It follows that the time-varying toll that decentralizes the social optimum is higher

for more central departure masses.

A.2 The Central Departure Mass is the Most Congested

Proposition A3. In the social optimum of the α-β-γ model, with α > β the central departure

mass is the most congested.

Proof. If the social optimum allocation entails only early departure masses, the result follows

immediately from Lemma 3 in Section 4. Consider therefore social optima with both early

and late arrivals. Where Ne is the number of commuters who arrive strictly early, No(= k0)

is the number of commuters who arrive on time, and Nl is the number of commuters who

arrive strictly late, it must be the case that that

−β Ne + γ (No +Nl) > 0 (27)

since otherwise total travel costs could be reduced by incrementally increasing the time of

the first departure while holding fixed the departure pattern; this would cause each of the

early departures to arrive less early, and each of the on time and late departures to arrive

later. (Similarly, it must the case that β (Ne + No) − γ Nl > 0 since otherwise total travel

costs could be reduced by the incrementally decreasing the time of the first departure while

holding fixed the departure pattern.)

Consider adding an extra commuter to departure mass 0, holding fixed the mass’ arrival

time as well as the size of mass i = −I, . . . ,−1. This perturbation increases the time

early of each commuter in masses i = −I, . . . ,−1, for an increase in total time early cost

of βNeT
′(k0). It also increases the travel time of each commuter in departure mass 0 by
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T ′(k0) for an increase in total travel time cost of αk0T
′(k0). Finally, the direct cost of the

added commuter is T (k0). Thus, the increase in total travel cost of adding this commuter is

βNeT
′(k0) + α(T (k0) + k0T

′(k0)).

Consider now adding an extra commuter to departure mass 1, holding fixed the mass’

departure time as well as the size of masses i = 2, . . . , I. This perturbation increases the

time late of each commuter in masses, i = 1, . . . , I, for an increase in total time late cost

of γNlT
′(k1). It also increases the total travel time cost of commuters in departure mass 1

by αk1T
′(k1). Finally, the direct cost of the added commuter is (α + γ)T (k1). Thus, the

increase in total travel cost is γ(T (k1) +NlT
′(k1)) + α(T (k1) + k1T

′(k1)).

At the social optimum, the cost of adding an extra commuter to departure mass 0 is the

same as adding her to department mass 1. Thus,

βNeT
′(k0) + α(T (k0) + k0T

′(k0)) = γ(T (k1) +NlT
′(k1)) + α(T (k1) + k1T

′(k1)). (28)

Now, suppose contrary to the Proposition that k1 > k0. Then rearranging (28)

α[(T (k1)+ k1T
′(k1))− (T (k0)+ k0T

′(k0))] = βNeT ′(k0)− γ(T (k1)+NlT
′(k1)) > 0. (29)

Since from (27) γ(No +Nl) > βNe and since No = k0, γ(k0 +Nl) > βNe so that

γ(k0 +Nl)T
′(k0)− γ(T (k1) +NlT

′(k1)) > βNeT
′(k0)− γ

(
T (k1) +NlT

′(k1)
)
> 0. (30)

But

γ(k0 +Nl)T
′(k0)− γ(T (k1) +NlT

′(k1)) =

γ
{
[N1(T

′(k0)− T ′(k1))] + [k0T
′(k0)− T (k1)]

}
< 0; (31)

k1 > k0 and the convexity of the function T (k) imply that T ′(k0)−T ′(k1) < 0, while k1 > k0

and Lemma 2 of Section 4 imply the string of inequalities T (k1) > T (k0) > k0T
′(k0). This

establishes the contradiction.
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Appendix B Further Details on the Optimization Pro-

cedure

In what follows, we show how the computation of the optimum can be set up as a nonlinear

programming problem with equality constraints defined with respect to variables mi over

the approximation grid described in Section 3.2.

Remark 1 (notation). In this appendix ei and ki are normalized, so that
∑n

i ei = 1. Thus,

as in Eq. (33) below for example, ki is multiplied by total population N to obtain traffic

density.

B.1 Evaluation of the Objective Function

Traffic density is the proportion of commuters that are in the bathtub between mi and mi+1.

It is the proportion of commuters that have entered at mi or before but that exit at mi+1

or after. Commuters that enter at mi−h exit at mi. This group and those that enter before

are not considered. Those entering at mi−h+1 exit at mi+1. It follows that we have to sum

the commuters entering from mi−h+1 to mi. Taking into account the fact that there are no

entries before m1 and after mn, we have

ki =

min(i,n)∑

j=max(1,i−h+1)

ej (32)

for i = 1, . . . , n+ h− 1. If Greenshields’ Relation is used, then travel speed is

vi = vf

(
1− N · ki

kj

)
. (33)

If another formulation is adopted (like the generalized Greenshields’ Relation or the one

used to construct the illustration in Fig. 5), then Eq. (33) should be changed accordingly.
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Clock-time duration of interval i (to travel from mile mi to mile mi+1) is

∆ti =
mi+1 −mi

vi
. (34)

The first departure occurs at mile m1, corresponding to clock-time t1 = m1/vf . So, clock-

time ti for i = 1, . . . , n+ h− 1 is given by

ti+1 = t1 +
i∑

j=1

∆tj, (35a)

which can also be written in the recursive form

ti+1 = ti +∆ti. (35b)

Using this information (Eqs. (32)–(35)) the social welfare, which is the objective function

for the optimum, is computed as follows. The utility of a commuter who enters the bathtub

at ti is ũ(ti, Ti), where Ti is the travel time for commuters entering at ti. In this model, it is

clear that Ti = ti+h− ti, so that the utility can be expressed as a function of entry time only.

We then use u(ti) = ũ(ti, Ti). Moreover we decompose the utility into two parts, entry and

exit subutilities. The former depends only on entry time, ti, and the last on exit time, which

is a function of entry time and h. Each commuter entering at ti gets an entry utility uE(ti).

The utility obtained by all commuters entering at ti is equal to their mass N ei multiplied by

the level of the utility uE(ti). The aggregate entry utility of the average commuter is then

given by

UE =
n∑

i=1

ei · uE(ti) (36)

63



Commuters who enter at ti exit at ti+h and each one in this group obtains a utility uX(ti+h).

The aggregate exit utility of the average commuter is then given by

UX =
n∑

i=1

ei · uX(ti+h), (37)

and social welfare is therefore

U = N (UE + UX) . (38)

Then, several constraints will ensure that the solution is feasible. These constraints state

that (i) traffic density is smaller than capacity, that (ii) all commuters enter the bathtub

and that (iii) all departures and arrivals occur within the limits where subutilities uE and

uX are defined.

B.2 Evaluation of the Constraints

There are three sets of constraints. In the first set, we state that traffic density never reaches

jam capacity. For interval 1 this constraint is Ne1 < kj or e1 < kj/N . For interval 2 it is

e1 + e2 < kj/N , and so on until interval h for which the constraint is e1 + . . . + eh < kj/N .

Notice then that if this last constraint h is satisfied, then all the earlier constraints 1, . . . , h−1
are satisfied, and thus can be ignored. A similar argument can be stated for the constraint

related to interval n, and those related to subsequent intervals (n+1 to n+h−1). Indeed the

constraint related to the density in interval n is en−h+1+en−h+2+ . . .+en < kj/N . But, since

there are no entries after mn, the next constraint (interval n+1) is en−h+2+ . . .+en < kj/N ,

which is satisfied whenever the earlier constraint is satisfied. The constraints related to the

densities in intervals n + 2, . . . , n + h − 1 can be ignored for the same arguments. So, the

only constraints taken into account are those related to intervals i = h, . . . , n. Setting these
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as equalities, we have

ei+n +
i+h−1∑

j=i

ej =
kj
N

for i = 1, . . . , n− h+ 1 (39)

where ei+n ≥ ϵ > 0 are slack variables. The second set of constraints contains a single one

stating that all the commuters enter the bathtub, or alternatively that entry rates sum up

to one:

n∑

i=1

ei = 1. (40)

The third set of constraints contains a single one stating that the latest arrival occurs before

t#:

e2n+h+2 + tn+h = t#, (41)

where e2n+h+2 ≥ ϵ′ > 0 is a slack variable. This last constraint is not required when UX(T )

is defined for t ≥ t#.

In this problem we have a total of 2n− h+2 nonnegative decision variables, including n

entry rates and n−h+2 slack variables, and n−h+3 equality constraints. For the practical

implementation it may be enough to take into account only constraint (40) and let the other

constraints be handled implicitly by the optimization routine. For the general case, however,

it is more reliable to explicitly provide all the constraints.

B.3 The Gradient of the Objective Function

Using (32), (33) and differentiating (35) with respect to ei we have

∂∆tj
∂ei

=





vf N

kj

∆tj
vj

, if max(1, j − h+ 1) ≤ i ≤ min(j, n)

0, if not.

(42)
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Notice that the derivative does not depend on index i, so that for all i satisfying max(1, j −
h+1) ≤ i ≤ min(j, n), we have ∂∆tj/∂ei = ∂∆tj/∂ej, which limits the number of derivatives

to compute in practice. Then, using (42) and (35), we have

∂tj
∂ei

=





0, if j ≤ i

∂∆ti
∂ei

+ · · ·+ ∂∆tj−1

∂ej−1
, if i < j ≤ i+ h

∂ti+h

∂ei
, if j > i+ h.

(43)

Then, differentiate (36) with respect to ei to obtain

∂UE

∂ei
= uE(ti) +

n∑

j=i+1

ej · u′
E(tj) · ∂tj∂ei

. (44)

Expression (44) shows that a marginal increase in entry rate ei increases the size of the

group itself and delays the entry time for the group entering after it. To evaluate the similar

impacts on exit subutility, differentiate (37) with respect to ei to obtain

∂UX

∂ei
= uX(ti+h) +

n∑

j=max(i−h,1)

ej · u′
X(tj+h) · ∂tj+h

∂ei
, (45)

which shows that an increase in entry rate ei has also two impacts. It increases the size of

the group itself and delays the exit of all the groups who were in the bathtub when group i

have entered. Finally, summing both derivatives, we get the impact on aggregate utility

∂U
∂ei

= N
(

∂UE

∂ei
+ ∂UX

∂ei

)
. (46)

B.4 The Jacobian of the Constraints

From the expression of constraints (39) and (40), all the derivatives with respect to relevant

variables are equal to one. For constraint (41) the derivative with respect to ei is equal

to ∂tn+h/∂ei for all i = 1, . . . , n and equal to one for the slack variable. We now give an
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expression of the Jacobian that is suitable for an implementation in a large-scale optimization

package.

We consider only nonzero elements. Let n1 = (h+ 1)(n− h+ 1), and define vectors A1,

A2 and A3 of length n1 + 2n+ 1 as follows.

A1(i) =





⌊
i−1
h+1

⌋
+ 1, if i = 1, . . . , n1

n− h+ 2, if i = n1 + 1, . . . , n1 + n

n− h+ 3, if i = n1 + n+ 1, . . . , n1 + 2n+ 1.

(47)

Let I ≡ i (mod h+ 1). Then, the elements of vector A2 are given by

A2(i) =





n+
⌊

i
h+1

⌋
, if I = 0 and i = 1, . . . , n1

I +
⌊

i
h+1

⌋
, if I ̸= 0 and i = 1, . . . , n1

i− n1 if i = n1 + 1, . . . , n1 + n

i− n1 − n if i = n1 + n+ 1, . . . , n1 + 2n

2n− h+ 2 if i = n1 + 2n+ 1

(48)

For the last constraints, we have, for all i = 1, . . . , n1 + 2n+ 1,

A3(i+ n1 + n) =





∂tn+h

∂ei
, for i = 1, . . . , n

1, otherwise.

(49)

The following result shows how all the elements of the Jacobian are computed using A1, A2

and A3.

Lemma 4. Let A1, A2 and A3 be as defined as in (47), (48) and (49), respectively. The

Jacobian of constraints (39),(40) and (41) can be computed as follows. For all i = 1, . . . , n1+

2n + 1 the derivative of constraint number A1(i) with respect to variable number A2(i) is
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equal to the value of A3(i).

B.5 The Hessian of the Objective Function

From (44) we have

∂2uE

∂ei ∂ei′
= u′

E(ti)
∂ti
∂ei′

+
n∑

j=i+1

(
∂ej
∂e

i′
u′
E(tj)

∂tj
∂ei

+eju
′′
E(tj)

∂tj
∂e

i′

∂tj
∂ei

+ eju
′
E(tj)

∂2 tj

∂ei ∂ei′


 . (50)

By differentiating (43) with respect to ei′ , we have

∂2 tj

∂ei ∂ei′
=





h+min(i,i′)∑

l=max(i,i′)

∂2∆tl

∂ei ∂ei′
, if max(i, i′) ≤ h+min(i, i′)

0 if not,

(51)

and by differentiating (42) we have

∂2∆tj

∂ei ∂ei′
=





2

(
N vf
kj

)2
∆tj
v2j

, if max(1, j − h+ 1) ≤ i, i′ ≤ min(j, n)

0 if not.

(52)

The computation of the second order derivatives for uX are similar, except that tj+h is used

instead of tj, and the Hessian is obtained by summing both, and scaling the matrix by N .

The detailed computation of the Hessian matrix is given in Algorithm 1.
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Algorithm 1: The computation of the Hessian

Data: First departure, last departure and approximation grid: M0, M , n, h ;
Entry rates e1,. . . ,en ; Model parameters and subutilities: uE, u

′
E, u

′′
E, uX , u

′
X

and u′′
X ; First order derivatives: ∂tj/∂ei for i = 1, . . . , n and

j = 2, . . . , n+ h; Initialize second order derivatives to zero: ∂2tj/∂ei∂ei′ = 0
for all i, i′ = 1 . . . , n and j = 2, . . . , n+ h.

Result: The lower elements of the Hessian matrix: ∂2U/∂ei∂ei′ = 0 for all
i = 1, . . . , n and i′ = 1, . . . , i.

1 for i = 1 to n do
2 for i′ = max(1, i− h+ 1) to min(i, n) do
3 for j = i to −→ i′ + h− 1 do

4
∂2∆tj
∂ei∂ei′

← 2

(
N vf
kj

)2
∆tj
v2j

5 if j == 1 then

6
∂2tj+1

∂ei∂ei′
← 2

(
N vf
kj

)2
∆tj
v2j

7 else

8
∂2tj+1

∂ei∂ei′
← ∂2tj

∂ei∂ei′
+ 2

(
N vf
kj

)2
∆tj
v2j

9 end

10 end
11 for j = i′ + h+ 1 to n+ h do

12
∂2tj

∂ei∂ei′
← ∂2ti′+h−1

∂ei∂ei′
13 end

14
∂2 uE

∂ei ∂ei′
←

u′
E(ti)

∂ti
∂ei′

+
n∑

j=i+1

(
∂ej
∂e′i

u′
E(tj)

∂tj
∂ei

+ eju
′′
E(tj)

∂tj
∂e

i′

∂tj
∂ei

+ eju
′
E(tj)

∂2 tj

∂ei ∂ei′

)

15 Let j′ ← h+max(i− h, 1)

16
∂2 uX

∂ei ∂ei′
←

u′
X(ti+h)

∂ti+h

∂ei′
+

n+h∑

j=j′

(
∂ej
∂e′i

u′
E(tj)

∂tj
∂ei

+ eju
′′
E(tj)

∂tj+h

∂e
i′

∂tj
∂ei

+ eju
′
E(tj)

∂2 tj

∂ei ∂ei′

)

17 The Hessian elements:
∂2 u

∂ei ∂ei′
← N

(
∂2 uE

∂ei ∂ei′
+

∂2 uX

∂ei ∂ei′

)

18 end

19 end
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