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Abstract:   In this paper, we introduce a statistical semi-parametric method to estimate 

production frontier based on Aigner and Chu frontier estimation method.  This 

procedure has been shown to produce maximum likelihood estimators of the parameters.  

However, no other statistical properties have been derived.  Using Wald’s consistency 

theorem for maximum likelihood estimators, we show that the estimator is consistent 

by verifying the required conditions.  Inference is based on re-sampling methods.  

Because the parameters to estimate define the frontier, standard bootstrap procedures 

were not available.  Sub-sampling offers a valuable alternative that works in this case.  

We have used this procedure to estimate the efficiency of the bus transportation industry 

in France in the presence of infrastructure.  The procedure is shown to be robust.   

 

 

Keywords: Efficiency, Semi-parametric methods, Bootstrap, Production technology, Bus 

transportation. 

JEL Codes: C51, C61, D24, L25 
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1. Introduction 

The measurement of efficiency of a group of decision units roughly consists in 

enveloping the data and then measuring the distance between the realized performance 

of the unit and this estimated frontier.  This distance between the unit and the frontier 

is what we call inefficiency.  In fact, the true technology defines the frontier between 

feasible and infeasible productions.  Behind this approach there is a considerable 

volume of economic theory. For instance, the frontier itself is of importance as it 

contains all the relevant information about marginal product, elasticity of substitution 

and returns to scale.  The characterization of the frontier rests on an axiomatic that 

provides some indication on what we should expect from the frontier.  Still, this frontier 

remains not directly observable and must be estimated.  This paper proposes to use a 

semi-parametric approach, based on the method developed by Aigner and Chu (1968), 

to estimate the frontier.  This method is usually presented as fully deterministic, but can 

be viewed as a maximum likelihood estimator.  The properties of this estimator have 

been considered to be limited and the approach was abandoned in favor of Stochastic 

Frontier Analysis (SFA) for which we have clear statistical properties.  In this paper, 

we show that the Aigner and Chu estimator is better behaved than initially thought and 

that it is possible to conduct some inference under this framework. 

There are actually two major approaches to estimate frontiers.  The first 

approach uses operational research tools to envelop the data; the main methods are data 

envelopment analysis (DEA) and free disposable hull (FDH).  The biggest advantage 

of these methods is that they do not make assumptions about the functional form of the 

frontier. A nonparametric envelop of the data is constructed and all observation inside 

the frontier of the envelope are deemed inefficient. This approach is mainly 

deterministic, although pioneering work by Simar and Wilson (1998) has been done to 
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correct this defect, allowing for some inference.  The second approach is rooted in 

econometric stochastic methods.  The starting point is identical as Aigner and Chu.  The 

input-output combinations must belong to the production set, the frontier is unknown 

and a parametric structure is fitted in order to contain the inefficient units.  Contrary to 

the Aigner and Chu approach where the frontier is “landed” over the data, in the case 

of SFA it is argued that the frontier does not have to envelop the data and in fact, some 

observations can be outside because of measurement errors and the likes.  Inefficiency 

becomes just one of the stochastic components added to the frontier (that can be either 

parametric or not), the other being the unobserved errors. Stochastic frontiers were 

introduced in articles by Aigner, Lovell and Schmidt (1977), Battese and Corra (1977), 

Meeusen and Broeck (1977) and Greene (1980a).  Green (2008) offers a good survey 

of the approach. 

The structure of SFA is organized around three components.  The first one is 

the frontier itself, the second is the random component containing all the non-

measurable factors that are exogenous to the decision process of the unit and the final 

component is inefficiency, assumed to be a stochastic component.  The approach we 

follow here is to neglect the first purely random component and consider that only the 

stochastic component of the model is inefficiency.  The idea consists in enveloping the 

data with a pre-specified functional form, more sort of landing it on the data in a way 

that minimizes a given distance between all the points in the data set and the frontier.  

This idea is from Aigner and Chu (1968).  Applications of Aigner and Chu’s method 

are not that numerous.  Various standard applications are Førsund and Hjalmarsson 

(1979), Albriktsen and Førsund (1990), Førsund (1992).  It has also been used from a 

cost point of view (Førsund and Jansen, 1977) and Malmquist index calculation of 

productivity growth (Nishimizu and Page, 1982).   

Flirting with the stochastic approach in the framework of Aigner and Chu is not 

new.  Timmer (1971) has changed the inequality constraints of the model to allow for 
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output observations to lie above the frontier.  However, this probabilistic approach 

amount to arbitrarily leave outside a share of the efficient units.  Afriat (1972) proposal 

lies in between SFA and a stochastic Aigner and Chu model.  He has postulated a 

deterministic frontier with a stochastic inefficiency.  Inefficiency is modeled as a 

gamma distribution, an idea we find in Greene (1980b).  This leads to the corrected 

least squares (Richmond, 1974).  In fact, Schmidt (1975) has shown that the Aigner and 

Chu approach generates maximum likelihood estimators and Greene (1980b) has 

shown that standard tools cannot be used to derive the asymptotic properties of these 

estimators.  He shows however that when the inefficiency is gamma distributed, the 

estimators of the frontier are well-behaved.  The likelihood so obtained does not 

correspond to any known optimization problem and definitely not to the Aigner and 

Chu linear and quadratic optimization problems. 

We first present the semi-parametric model in the primal space (this is by no 

means restrictive as the model can be applied in the dual space, e.g. Ouellette et al. 

(2016)).  Then, we look at the consistency of the estimator.  We show that under both 

the linear and quadratic models, the estimation procedure is consistent.  Consequently, 

it is possible to construct an inference procedure for the parameters and measures of the 

technology.  For this we use some sub-sampling procedures and we construct the 

appropriate confidence intervals.  Finally, an application to the French bus 

transportation industry is presented to illustrate how the procedure works. 

2. The Model 

In this section, we present our version of the Aigner and Chu model.  The framework 

is as follows.  Let us suppose that the output and all inputs are continuous variables and 

that inputs can be either variable (under the control of the decision maker or 

discretionary) or quasi-fixed (not under the control of the decision maker at decision 

time, in other words non-discretionary).  That is, a production activity uses a set of 
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variable inputs  , 1, ,iz i p  z  and quasi-fixed inputs  , 1, ,jq j s  q  to 

produce the output yR .  Let x = (z,q)  and define the possible production as 

follows: 

y £ f x( ),  (2.1) 

where f  is a production function using the input vector x  to produce y.  The efficiency 

measure in the sense of Debreu-Farrell is given by: 

TE y,x( ) =
y

f (x)
£1.  (2.2) 

Suppose now that the production function is parametric and that we keep the 

Debreu-Farrell framework, so that inefficiency enters the model multiplicatively.  

Then, we can write:  

y = f x,b( )TE ,  (2.3) 

with   0 £TE £1 , b  is the production function parameter vector.  The logarithmic 

transformation of equation (2.3) gives:  

   
ln y = ln f x,b( )+ lnTE = ln f x,b( )+ e ,   (2.4)  

where   e = lnTE £ 0  is a measure of technical efficiency and it satisfies  

  -e = - lnTE »1-TE  when small.  To measure the technical efficiency and to 

characterize the technology we need to estimate the parameter vector b .  This requires 

being more specific about the i s. 

 To do so, we apply Aigner and Chu’s method and build a common frontier for 

all firms at the same time.  This imposes a constraint on the i s.  The procedure consists 

in minimizing the sum of the distance between the observed output and the efficient 

output of all firms.  The estimated frontier clearly depends on the functional form we 

use.  To illustrate how the procedure works, suppose that there are n firms, indexed 

1,...,i n  and that the production function is Cobb-Douglas with  k  inputs: 
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y
i
= e

b
0

j=1

k

Õx
ji

b jTE
ji

.  (2.5) 

Taking logarithms on both sides of this equation, we get: 

0 0

1

ln ln lnT

i ji i i i

j

k

jy x     


      x . (2.6)  

The inefficiency is entirely included in i  and nothing prevents us from making it 

stochastic, but we do not do it here, and for this reason we call this model a deterministic 

frontier.  However, it is possible to add some structure on this term.  One natural thing 

to do is to force the i s to be non-positive.  Under this constraint, Aigner and Chu 

(1968) suggest two methods to compute the parameters.  For the first procedure, the 

estimated parameters are the arguments minimizing the following linear program:  

,

0

0

1

. : ln ln 0 1,...,

min

0, 0

i

i

i

T

T

n

i i is t y i n

 

 









 

 

 
 



 



 



x  (2.7) 

The alternate procedure consists in solving the following quadratic program: 

1

0

2

,

0

. : l

min

0

n ln 0 1,...,

, 0.

i

i

i

T

n

T

i is c y i n

 

 













     





x  (2.8) 

In both models, the slacks are measures of i s, and so, we directly obtain a measure of 

the inefficiency score for each Decision Making Unit (DMU): 

 

0
ˆ ˆˆ T

i i iy    β x .  (2.9) 

There is no reason to restrict the production function to a Cobb-Douglas functional form.  

The only requirement is that the function to be estimated be linear in the parameters.  
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In particular, it means that 
   
ln f x,b( ) can be a translog functional form.  In the next 

section, we derive the statistical properties of the Aigner and Chu model for such 

general linear in the parameters functional forms. 

3. The Statistical Model 

The objective of this section is to derive a procedure to obtain confidence intervals for 

the parameter estimates returned by the Aigner and Chu method.  The first step would 

be to characterize the type of estimators we obtain using this procedure, and then if the 

estimator is valid, we need to know where it converges when the sample goes to infinity.  

Then only, we would be able to propose a methodology to characterize the dispersion 

of the estimates.   

It can be shown that both, the linear and the quadratic estimators proposed by Aigner 

and Chu are maximum likelihood estimators.  What is less obvious is that these 

estimators are both consistent.  Consistency is the minimal requirement for statistical 

inference, but due to some properties of the estimator, the standard asymptotic tools 

cannot be used to derive the estimators’ distribution.  Because of this, we rely on 

simulation based inference methods, subsampling to be precise, to assess the dispersion 

of the estimates of the frontier parameters. 

3.1 Maximum Likelihood Estimation 

For all units i, with i=1,…,n, we suppose that the frontier is linear in the parameters, 

that is 0 0i + X  with true parameter vector  0 0   and that all observed outputs, iy

, are on or under the frontier.  Note that iy  can be a transformed output and iX  can be 

made of transformed inputs, cross-products and the likes (i.e. ln pz , ln lns pk z , etc.), so 

it is compatible with a translog functional form. The frontier model is: 

0 0i i iy    X ,  (3.1) 
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where is a 
  
1´ k( ) vector of inputs for unit i , the scalar a

0
Î»  

and the ( 1)k  vector  are the (unknown) parameters and the 

scalar i  is the inefficiency term, clearly non positive.  Stacking all n observations, we 

get:  

   
y= a1

n
+ Xb + e ,  (3.2) 

where y  is a 
  
n´1( )  vector of observed outputs, 1n is a 

  
n´1( )  vector of ones,   is the 

 1n  vector of inefficiency and X is the  n k  input matrix obtained by stacking the 

.  

Suppose now that the inefficiency term is exponentially distributed.  That is, 

  
f e ,s( ) = (1/s )exp(e /s ) where 0   and 0 0  .  The log-likelihood is:  

    
ℓ s ,a ,b | y( ) = ln L s ,a ,b | y( ) = -nlns +

1

s
(y

i
-a - X

i
b)

i=1

n

å , (3.4) 

where 
    yi

-a - X
i
b £ 0, "i =1,» ,n .  Solving the first-order conditions for ˆ

n  and 

substituting back into equation (3.4) gives the concentrated likelihood function:  

    

ℓ c a ,b | y( ) = -nlnŝ
n
-

n

ŝ
n

ŝ
n

= -nln
1

n
(y

i
-a - X

i
b )

i=1

n

å
ì
í
î

ü
ý
þ

- n. (3.5) 

Maximizing 
   
ℓ c a ,b | y( )  consists in minimizing the first term under the negativity 

constraint on the i .  That is: 

  (3.6) 

This is exactly Aigner and Chu’s linear program.  As in Schmidt (1975), we have the 

following result: 
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Proposition 3.1. The solution to equation (3.6) is a maximum likelihood estimator when 

the inefficiency terms follow an exponential distribution.  

This is an interesting result, but it is relevant only if we can use it to construct some 

inference for the estimated parameters.  Unfortunately, the standard proofs for 

consistency and asymptotic normality do not work here.  As was shown by Greene 

(1980a) the expectation of the score is not null.  That is, let the 
  
1´ (2 + k)( )vector 

  
S

n
b( ) = n-1 ¶ln L ¶b  be the score of the likelihood, then: 

.  (3.7) 

where  , , T θ = β  and 0 and 1   are scalars, and  1  X  is  1 k .  The 

Hessian matrix is also nonsingular.  That is: 

    

-E
1

n

¶2 ℓ

¶q ¶q T

é

ë
ê

ù

û
ú = -E

ℓ
ss T ℓ

as T ℓ
bs T

ℓ
saT ℓ

aaT ℓ
baT

ℓ
sbT ℓ

abT ℓ
bbT

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

1

s 2
-

1

s 2
-

1

s 2
X

-
1

s 2
0 0

k

T

-
1

s 2
X T 0

k
0

(k´k)

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

.  (3.8) 

Consequently, traditional methods for inference cannot be used.  However, if we can 

establish the convergence of the estimator, then we can turn to re-sampling methods to 

construct confidence intervals for the estimator.   

 We show here that it is possible to apply Wald (1949) consistency result to the 

Aigner and Chu’s estimator.  The fundamental characteristic of the result is that it does 

not use the derivatives of the likelihood function.  This avoids dealing with the non-

zero score expectation and the singularity of the hessian matrix.  There are eight 

assumptions we need to verify for consistency of the maximum likelihood estimator.   
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 In Wald’s theorem, there are no restrictions on the parameter space except that 

it is closed, i.e. the parameter space   is a closed set.  In our model, when 𝜎 goes to 

zero the density degenerate and the problem collapses.  Then we suppose that 

 s Î[s ,¥)  where 0   is an arbitrarily small constant bounded away from zero.  We 

also require the frontier parameters to be bounded from below for exactly the same 

reason.  The economic problem is relevant for positive productions. 

Assumption 3.1. The parameter space,  , is a closed subset of    »
k+2  such that for a 

positive scalar M we have 
   
QÍ -M ,¥éë )

k+1

´ s ,¥éë )Í » k+2 with 0  .  

This assumption forces the exponential distribution to be well-defined for 

admissible i  (they must be all negative).  It also implies that firms are inefficient on 

average and they cannot be all efficient.  In fact, efficiency is a probability zero event 

in this model.  Now, we are in a position to state the main result. 

Proposition 3.2. Let 
   
q = s ,a ,bT( ) and define the maximum likelihood estimator, ˆ

n , 

as the argument that maximizes 

   
-nlns + (1/s ) y

t
-a - X

i
b( )

i=1

n

å  subject to 

  
y

i
<a + X

i
b . That is: 

 

 

 , ,

1

arg max ( , , | ) |

1
arg max

ˆ

ln |

i i

i i

n

n

i i

i

y y

n y y



  

   

   


 




  

 
       

 


X

X X
  

Then, under Assumption 4.1, the maximum likelihood estimator ˆ
nθ  is consistent, 

0
ˆplim n

n

θ θ . 

Proof.  The proof is in Appendix A. 

Now, we consider Aigner and Chu’s quadratic model.  Suppose that i  is distributed 

half-normal: 
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 
2

2

2 2

2
, exp

2
f


 

 

 
  

 
,  (3.9) 

where 0  .  The first two moments of this distribution are 
 
m

e
= (2s 2 p )1 2 = 0.7978s  

and 
 
s

e

2 =s 2 p - 2( ) pé
ë

ù
û = 0.3653s 2

.  Given a sample of n firms, the log-likelihood is 

, (3.10) 

where 
   
y

i
-a - X

i
b £ 0.  As above, using the first-order conditions to solve for 2 , we 

find 
2ˆ
n  that we substitute back in likelihood function to get the concentrated log-

likelihood: 

  (3.11) 

It is immediate to conclude that  is maximized when the last term in 

equation (3.11) is minimized under the negativity constraint of the inefficiency terms, 

i.e. 0  .  Since the logarithm is a monotone transform, this is exactly: 

  (3.12)

 

This is Aigner and Chu quadratic program. As in Schmidt (1975), this is summarized 

as follows: 

Proposition 3.3. The solution to equation (3.12) is a maximum likelihood estimator 

when the inefficiency terms follow a half-normal distribution. 

Again, we have the same problem we had with the exponential distribution, the 

consistency and asymptotic normality of the estimator cannot be proved using the 

standard method.  The expectation of the score is not equal to zero, that is: 
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E n-1ℓ
q

é
ë

ù
û = 0 -

2

s 2p
-

2

s 2p
X

é

ë

ê
ê

ù

û

ú
ú
¹ 0 , (3.12) 

where 2, ,    θ β , and the Hessian matrix: 

                                      

(3.13) 

is clearly singular, as all second-order minors are null. 

Now, we turn to the consistency of the estimator.  As with the exponential 

distribution model, the estimator can be shown to be consistent using Wald’s theorem.  

As before, denote by ( , )F y θ  the cumulative distribution of the half normal density,

  f (y,q )  where 
  
F y,q( ) = f s,q( )ds

-¥

y

ò . Of course,   F( y,q )  does not exist in closed 

form.  There are 2k   parameters to be estimated, 
 a ,b , and 2 .  Again, we suppose 

that the parameter space is a closed subset of the 2k  -Euclidean space, .  

However, we have to restrict this space.  As before, if there is no inefficiency the 

distribution collapses leading to a problem that is not well-defined.  For this reason, we 

impose that the distribution is not degenerate by constraining the variance to be strictly 

positive, i.e. 
2 2 0   .  For the problem to have an economic sense, we bound from 

below again the intercept and the slope parameters.  For this, we need the quantity 

 a + Xb  to be bounded from below.  Since all inputs are finite, this is achieved if we 

assume that M     and i M     for all 1,..., .i k  
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Assumption 3.2. The parameter space, Θ , is a subset of    »
k+2 , such that for a positive 

scalar M we have 
   
QÍ -M ,¥éë )

k+1

´ s 2 ,¥é
ë )Í » k+2 with 2 0  .  

We have to allow for negative parameters because we might want to specify a translog 

production function.  This assumption imposes inefficiency for some units; this is due 

to the fact that the distribution cannot degenerate at zero.  In fact, to be efficient is a 

zero-probability event.  Note also that this assumption, as before, gives one of Wald’s 

conditions.  Now, here is the second consistency result: 

Proposition 3.4 Let 
   
q = s ,a ,bT( ) and define the maximum likelihood estimator, ˆ

n , 

as the argument that maximizes the likelihood function: 

    
ℓ s

2
,a ,b | y( ) =

n

2
ln

2

p

æ

èç
ö

ø÷
-

n

2
lns

2
-

1

2s
2

i=1

n

å y
i
-a - X

i
b( )

2

 

under the constraint 
  
y

i
£a + X

i
b . Under Assumption 3.2, the maximum likelihood 

estimator, ˆ
n , is consistent, i.e. 

 
plim

n®¥

q̂
n

= q
0
. 

Proof.  The proof is in Appendix A. 

3.2 Inference in the Semi-Parametric Model  

In this sub-section, we present an approach for statistical inference in the Aigner and 

Chu model.  As we have seen in Section 2, the deterministic frontier models are not 

based on statistical assumptions.  However, we have shown above that the Aigner and 

Chu model produces consistent maximum likelihood estimators.  Now, we have to use 

the Data Generating Process (DGP) on which the estimator rests to conduct some 

inference for the parameters.  The missing ingredient is the distribution of the estimator 

and since our estimator does not produce standard errors, the problem is compounded.  

One way out of this problem is to simulate the DGP to deduce the statistical properties 

of the estimator.   



15 

 

The crucial step is to generate pseudo-samples that are consistent with the DGP.  

There are many methods, but the problem at stake here drives the procedure to be 

adopted.  We have to deal with the fact that the parameters of interest are on the 

boundary of the parameter set.  Simar and Wilson (1998, 1999) and Andrews (2000) 

document this circumstance.  Following Politis and Romano (1992, 1994), we use sub-

sampling, a procedure that contrasts with Efron’s bootstrap method that draws pseudo-

samples with replacement the size of the original sample.  Bickel et al. (1997) and 

Andrews (2000) detail the properties of sub-sampling.  

The principle is as follows.  Suppose we have a sample of n  i.i.d. random 

vectors, 1 2( , , , )n X X X X , and an estimator, 
   
b̂ = b X

1
, X

2
,¼, X

n( ) . We wish to 

characterize the precision of that estimator.  Since the empirical cumulative distribution 

NF  is a consistent maximum likelihood estimator of the true distribution, then it can be 

used to generate pseudo-samples to estimate 
   
b̂ b = b X

1

b, X
2

b,¼, X
m

b( )  with m not 

necessarily equal to n.  In the bootstrap world,   b̂
b - b̂  would have the same distribution 

as  b̂ - b  so that replicating B times the estimation on pseudo-samples can give us a set 

of values that approximate the true distribution.   

There is a caveat here however.  The traditional bootstrap is not suited to 

approximate the distribution of parameters that are on the frontier of the parameter set.  

In fact, the observations are bounded by the parameters we are estimating.  It makes it 

impossible to obtain observations on the « other » side of the frontier.  A solution is the 

smooth bootstrap, proposed by Simar and Wilson (1998), but it is virtually impossible 

to implement in our case.  An alternative is to move the noise we need around the 

frontier inside the frontier and then suppose that this noise can be translated on the 

frontier.  This is roughly the sub-sampling principle.  In the procedure above, we use 

pseudo-sample of size m strictly smaller than the size of the original sample, n.  For the 
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convergence of the procedure we need that m satisfies m  and / 0m n   when 

n .  The pseudo-samples need not be drawn with replacement.  Politis, Romano 

and Wolf (1999) have shown that sub-sampling procedures converges under weaker 

conditions than the standard bootstrap.  Simar and Wilson (2011) show that a sub-

sampling method would generate a consistent inference even if the frontier depends on 

the estimated parameters.  This is the procedure we apply.  

Before constructing the confidence interval, note that in spite of the fact that the 

Aigner and Chu estimator is consistent, it is biased in small samples.  Since the bias is 

given by ˆBias E(ˆ )i i    
 

 we can correct it using sub-sampling as follows: 

  

Bias
B

q̂
i

é
ë

ù
û = B-1

b=1

B

åq̂
i

b -q̂
i
,                                         (3.14) 

and the bias corrected estimate is: 

  

ˆ̂q
i
= q̂

i
- Bias q̂

i
é
ë

ù
û = 2q̂

i
- B-1

b=1

B

åq̂
bi

* .                    (3.15) 

To construct the confidence intervals we follow the procedure proposed by Hall 

(1992a) and Efron and Tibshirani (1993).  We wish to construct a confidence interval 

for ˆ( , )x y  .  Given the size of the interval,  , this consists in finding 𝑎𝛼 and 𝑏𝛼 

such that: 

  
Pr -b

a
£q̂(x, y) -q £ -a

a( ) = 1-a .  (3.16) 

The problem is that we do not know the probability distribution.  However, we know 

that when B tends to infinity, we have:  

  
q̂(x, y) -qé
ë

ù
û P ~ q̂ b(x, y) -q̂(x, y)é

ë
ù
û P.  (3.17) 

So we are justified to use the empirical distribution ˆ ˆ( , ) ( , )b

i ix y x y   for b = 1, 2,…, 

B and i=0,…,k to approximate the distribution of ˆ( , )x y  .  Therefore, for each 



17 

 

parameter, sort the
 

ˆ ˆ( , ) ( , )b

i ix y x y  , b =1,..., B in ascending order and eliminate 

 2 100 %   elements at each end of the distribution.  The corresponding values of 

 2 100 %ˆ ˆ( , ) ( , )i ix y x y


 
 

  are the empirical values of *a  and *b .  Now substitute in 

equation (3.16) *a  and *b  for a  and b , and * ˆ( , )ˆ ) ( ,x y x y 
   

 for ˆ( , )x y  
 

, 

to obtain: 

* *ˆPr( ( , ) ) 1b x y a          .  (3.18) 

Finally, a 1   confidence interval is given by: 

   * *ˆ ˆ, ,x y a x y b       .  (3.19) 

In the following section, we present an application of this methodology. 

4. An Application of the Semi-Parametric Model 

In this section, we illustrate how to apply the method presented above.  Since Aschauer 

(1988), public infrastructures, an input supplied by the government, have been at the 

center of attention in trying to determine if they were impacting returns to scale.  Our 

application focuses on the bus transportation industry in France.  We exclude all public 

transit companies to focus on the inter-city transportation of passengers.  The data are 

for the period 2000-2004.  After homogenization of the data, we obtain 2554 DMUs, 

roughly 500 DMU per year.  The production process is divided into two types of inputs, 

variable (including labor, maintenance, energy and materials) and quasi-fixed (capital 

and infrastructure).  The output is the number of kilometers travelled by the vehicles 

(including empty trips).  Table 4.1 presents the exact description of the variables used, 

while Table 4.2 presents the descriptive statistics. 

[INSERT TABLE 4.1 HERE] 

[INSERT TABLE 4.2 HERE] 
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 The functional form we used to estimate the frontier is a translog.  That is, 

  

ln y = a
o
+

p=1

P

åa
p
ln z

p
+

s=1

S

åa
s
lnk

s

+
1

2
b

pp'
ln z

p
ln z

p'
p'=1

P

å
p=1

P

å +
1

2
b

ss'
ln k

s
lnk

s'
s'=1

S

å
s=1

S

å + b
ps

ln z
p
lnk

s
s=1

S

å
p=1

P

å ,

  (4.1) 

where αo  is the constant, 
 
zT = L E ENT Mé

ë
ù
û  is the vector of variable inputs 

(labor, L , energy, E , maintenance, ENT , miscellaneous materials, M ) and 

 T V Infk  is the vector of quasi-fixed inputs (the number of vehicles, V , and the 

infrastructure indicator, Inf ).  The main advantage of the semi-parametric approach is 

that we can directly measure the main characteristics of the technology directly from 

the functional form.  Note that because our sample span a short period, we have 

neglected technical change. 

Let ˆ
iy  be the estimated output (the exponential of the output right-hand side of 

equation 4.1), then define the output oriented technical efficiency as ˆ/ob

i i

s

i y y  .  The 

average efficiency of the industry is given by: 

  

j = j
i
´ y

i

obs y
j

obs

j=1

n

å
æ

è
ç

ö

ø
÷

i=1

n

å ,   (4.2) 

where   is the average technical efficiency measure.   

The variable input elasticity of output ( pE  ), quasi-fixed input elasticity of 

output ( sH  ) and returns to scale (  ) are given by:  

'

'

'l
ln

ln
ln

n  pp pp ps

p

p s

p s

y
E

z
z k  


   


  , (4.3) 

' '

'

ln
nln

ln
lss ss s p ps

sss

y
zH k

k
  


   


 ,  (4.4) 



19 

 

' ' '

1 ' 1

'

'

1 1

ln ln ln

,

ln
S

pp ps ss s ps

pp p s s s

S

P

p p s s p

P

p s
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z k zk
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 

 

   
       

  

 

     

 

 (4.5) 

where ( , , , )p L E ENT M  and ( , )s V Inf . 

We have solved the linear and quadratic programs.  We have also computed the 

confidence intervals for the parameters and returns to scale, following the sub-sampling 

method presented in the previous section. All calculations are made using a SAS 

program written by the authors.  For the sampling procedure, we have used 3000 

replications, B = 3000, with sub-sampling size of 80% (m = 0.8).  Robustness checks 

have been made, and the results appear to be not very sensitive to the size of the sub-

samples.   

Tables 4.3 and 4.4 contain the estimates for the linear and quadratic program 

respectively.  The first column contains the parameter estimates, the second the bias 

and the third the corrected estimates.  The last six columns present the upper and lower 

bounds of size 90%, 95% and 99% confidence intervals, respectively.  The results are 

consistent with what is usually found in translog estimation, as many parameters are 

not significant.  However, for each input there are always parameters that are 

significant.  The most intriguing results are for capital (the number of buses adjusted 

for capacity), as not that many parameters were significant.  In fact, the own effect 

parameters V  and VV , and some cross effect terms, _ _ _, ,L V ENT V V Inf    are not 

significant at all size.  Nonetheless, the crossed terms _E V , _M V  are significant at 

size 95%.  Consequently, we cannot conclude that capital does not contribute to the 

frontier. 

[INSERT TABLE 4.3 HERE] 

[INSERT TABLE 4.4 HERE] 
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It is interesting to note that the optimization criterion is not making a large 

difference, as the results obtained from the linear program are very similar to those 

obtained from the quadratic optimization program.  The choice of the functional form 

is not neutral, however.  We have also estimated these models using a Cobb-Douglas 

production function, and the results are without any ambiguity different. 

We report in Table 4.5 the input elasticities of output.  Essentially, they give us 

the impact of each input on production.  As it can be noticed, they are all positive and 

smaller than one.  Note that again, there is virtually no difference between the linear 

program and the quadratic program results. 

Table 4.5: Input Elasticity of Output  

 𝐸𝐿 𝐸𝐸 𝐸𝐸𝑁𝑇 𝐸𝑀 𝐻𝑉 𝐻𝐼𝑛𝑓 

Translog PL 0.613 0.187 0.052 0.024 0.014 0.496 

Translog PQ 0.609 0.188 0.057 0.025 0.015 0.442 

ln ln , , , ,p pE y z p L E ENT M     are the variable input elasticities of output while 

ln ln , ,s sH y k s V Inf     are the quasi-fixed input elasticities of output.  

 

Now, note that the effect the marginal effect of an input on its marginal productivity 

can be computed as follows:   
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, "p,  (4.6) 

and similarly for the quasi-fixed inputs.  The sign of 𝐸𝑝𝑝  and 𝐻𝑠𝑠  are entirely 

determined by  pp pE   and  ss sH  . From Table 4.3, 4.4 and 4.5 we note that 

pp pE   and ss sH   so that these marginal effects are always negative.  In other 

words, all inputs exhibit decreasing marginal productivity. 

 The labor elasticity is always the largest, so among the factor controlled by the 

firm, labor is the most important.  The elasticity is equal to 0.613 for PL (0.609 for PQ) 
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followed by energy, maintenance and materials.  The relatively low vehicle elasticity, 

HV = 0.0145, is probably due to the fact that vehicles are rarely full. So increasing the 

number of vehicles has a small effect on output.  Consequently, it is probably more how 

the vehicles are used that has an impact.  Increasing the number of drivers or the load 

factor may have more impact.  The impact of the infrastructure is striking.  Its effect is 

less than labor, but very important in the production process, the elasticity is equal to 

0.496 for PL (0.442 for PQ).  It shows that the size of the infrastructure is a key element 

of the production process in this industry.  More infrastructures allows the firm to 

produce more for the same level of the other inputs, as less time is spent in traffic jams 

and the likes.  

 Now, let us turn to returns to scale measurement.  To measure the returns to 

scale, we have projected every firm on the production frontier and measured there the 

returns to scale (recall that returns to scale make sense only for points on the frontier).  

Table 4.6 present the descriptive statistics (median, minimum, maximum, and the first 

and last quartiles).  Confidence intervals for these quantities are also reported.  Figures 

1 and 2 present the distribution of the returns to scale for the linear and quadratic 

problems respectively. 

Since we are interested by the impact of the infrastructure, we can calculate the 

returns to scale with and without the infrastructure.  The returns to scale for the inputs 

is under the control of the firms are given by ,L E ENT M VNoInf E E E E H       

leaving the variable infrastructure out of the calculation, while the long run returns to 

scale (including infrastructures) are given by Inf NoInf infH   . When the variable 

infrastructure is not included in the calculation of the returns to scale, only 16.9% of 

the firms operate under increasing returns to scale for the linear program, and 16.2% 

for the quadratic program.  It means that when infrastructures are ignored, most firms 

exhibit decreasing returns to scale.  When infrastructures are included, virtually all 

firms operate under increasing returns to scale for both programs, linear and quadratic.  
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The histograms in Figure 1 and 2 make this feature obvious.  At size 5% and below, it 

is not possible to reject the hypothesis that the firms operate under constant returns to 

scale when the variable infrastructure is not included, as the confidence intervals 

contain one.  So, for what is under their control, firms operate at the optimal size.  This 

is another story for the long run returns to scale as in both programs the null hypothesis 

that the firms operate under constant returns to scale is clearly rejected.  It means that 

the size of the firms is not optimal and that some restructuring of the industry is 

desirable. We can interpret these results by saying that either that the infrastructures are 

not big enough (recall that infH  is downward slopping), or there are too many small 

firms or a combination of both.  So firms must merge and the government must invest 

in the infrastructure. 

 The solution to both programs has allowed us to compute the technical 

efficiency, i , of all individual firms i.  Table 4.7 contains the weighted average of the 

output oriented efficiency as shown in equation (4.2) for both programs.  The average 

is also reported for the small and large firms.  
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Table 4.7. Technical Efficiency 

 Linear Quadratic 

Total  0.853 0.859 

Smallest 5% 0.749 0.755 

Largest 5%  0.858 0.864 

Linear and Quadratic indicate the nature of the error minimization program,   is the 
weighted efficiency. 

  

There is no difference between the two criteria used for the minimization of the errors 

again.  The results show that it is possible to increase production by roughly 14% 

without changing the quantity of inputs used.  The French bus transportation industry 

seems relatively more efficient than some of its European counterpart (Hirschhausen 

and Cullmann (2010), and Odeck and Alkadi (2001)) despite being subsidized by the 

State through some local monopolies.  As expected, the smallest firms are the least 

efficient, while the largest are the most efficient.  

Conclusion 

In this paper, we have introduced a statistical semi-parametric method to estimate 

production frontier.  The method is based on Aigner and Chu (1968).  Although it has 

been shown that the estimators proposed is a maximum likelihood estimator, it has been 

believed that it was not possible to conduct statistical inference because traditional 

methods to show consistency and asymptotic normality did not apply.  However, using 

Wald (1949) proof of consistency, a proof that did not require differentiability, we have 

shown that the estimator was consistent.  Inference was based on re-sampling methods.  

Because the parameters to estimate define the frontier, standard bootstrap procedures 

were not available.  Sub-sampling offers a valuable alternative that works in this case. 

We have just moved by translation the problem inside the data set and assumed that it 

worked at the frontier. 
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 We have used this procedure to estimate the efficiency of the bus transportation 

industry in France.  The procedure is shown to be robust.  The bus transportation 

industry is also shown to be operating under increasing returns to scale, while if we do 

not take into account the infrastructure, the industry operates under constant returns to 

scale.  These results are significant at the 95% confidence level. 
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Appendix A. Proofs 

This appendix contains the proofs of the two consistency results.   

A.1 The exponential case 

We begin with the consistency of the ML estimator under the assumption that the 

inefficiency is exponentially distributed.  To do this, we need to introduce some 

notation.  Let ( , )F y   be the cumulative function of the exponential density   f (y,q ) .  

That is 
  
F y,q( ) = f s,q( )ds

-¥

y

ò .  Recall that the exponential density in our problem is 

defined as: 
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Similarly, given 0r  , define  
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for all 
 
q ³ r , and  

  

j* y,r( ) =
j y,r( )    si j y,r( ) >1
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Lemma A.1. The cumulative function  ,F y θ  is absolutely continuous. 

Proof. This follows from Royden (1988), Proposition 4.14 since f  is continuous for 

all admissible values of θ .  

QED 

This gives the first condition of Wald’s theorem.  The following six lemmas establish 

the remaining conditions to be satisfied.  They essentially show that the likelihood 

function is well-behaved for extreme values of the parameter vectors and in the 

neighborhood of a given vector.   

Lemma A.2. Let 
 
q

0
= (a

0
,b

0
,s

0
) be the true parameter vector and given sufficiently 

small   and sufficiently large r , then the expectations  
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are finite when evaluated with respect to the true probability measure, i.e. 
  
F y,q

0( ) . 

Proof. We begin by showing that 

   -¥

a
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+Xb
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ò ln f
*

y,q | r( )dF( y,q
0
) is finite.  Note that since 

ln1 0  we have *ln 0f  .  For a given admissible parameter vector, 
 
a ,b ,s( ) = q  with 

 s > 0 , the exponential density is monotonically increasing in   (recall that   is 

negative). Then, for all   and b  such that
  
y £a + X

i
b  the function f  is 

monotonically increasing in y  up to the upper bound, 
  
y = a + X

i
b , and 

  f (y,q ) = 0 

for 
   
a + X

i
b £ y £a

0
+ X

i
b

0
. Now, for   sufficiently small, suppose that the function 

assumes values larger than one on the interval ,y y 
   with 

   
y <a

0
+ X

i
b

0
. 

Now, let ( )N   be a closed neighborhood of  , satisfying '  θ θ .  Clearly, this 

set is compact and since f  is continuous in   the function f  reaches its maximum 
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inside this set.  Denote the maximum as max sup Mf f e   with M  .  This holds 

for all ,y yy     since f  is monotonically increasing. 

Let the indicator function for 1f   be denoted ( 1)I f  , then using dF fdy , we 

have: 

(A.6) 

This completes the proof of the first part.   

Now, let us consider the second integral.  As above, it is only relevant if f  

assumes values larger than one for some iX  and y .  Otherwise, the result trivially 

holds.  Given iX  and for all values of y , the function 
   
s -1 exp s -1(y-a - X

i
b){ } 

tends to its supremum when   et b  are chosen such that 
   
y-a - X

i
b ® 0  and 

  .  Let us denote the supremum as  exp M .  Then, for given iX  and y , we 

need to choose   and   to find the supremum of f  knowing that   will ne such that 

  .  Note also that since 0   , the density function is always bounded for all 

  and   such that 
  
a + X

i
b ³ y  (i.e. 𝑦 is admissible). 

It means that   and b  should be such that 
  
a + X

i
b ® y  (in fact, 

  
y = a + X

i
b

) with rθ  and    if possible or   . Note also that if    y-a - Xb < 0  for 

  
a ,b( )

2

-s 2 = r 2
 then 

   
f y,q( ) < f a + X

i
b ,q( )  with 

  
y <a + X

i
b  and   .  
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Therefore sup *  is reached for   , since 
  f (y,q ) is bounded between zero and M  

( f  reaches its maximum in    and
  
y = a + X

i
b  for all y ).  

Now, since f is monotone in y , if there is no y  such that 
  
f ³1, " q > r , then

   0

a
0
+Xb

0

ò logj( y,r )dF = 0 . Thus, let us consider y  such that 
  f (y,q ) ³1 for some 

 
q > r

. We have: 

 (A.7) 

QED 

Lemma A.3. For all convergent sequence 
 
q

n{ } , 
  
lim
n®¥

q
n

= q , we have for all y , 

  
lim
n®¥

f (y,q
n
) = f (y,q). 

Proof. Since q  belongs to a closed set and since f  is continuous in y  and its 

parameters for all θ , then all convergent sequence in  , i.e. 
  
lim
n®¥

q
n

= q , implies 

that 
  
lim
n®¥

f (y,q
n
) = f (y,q).  In fact, this is just restating that f is continuous. 

QED 

The following lemma identifies the parameters.   

Lemma A.4. Let 1  and 2  be two distinct parameter vectors, 1 2  .  Then 

1 2( , ) ( , )F y F y   for at least one y. 

Proof.  For two distinct parameter vectors, the exponential density function has at most 

finitely many points such that 
  
f y,q

1( ) = f y,q
2( ). Consequently, except for a finite 

number of ys,  
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       2 2 2

2 2

1 1 1

1 1

1 1 1 1
, exp exp , .i if y y y f y     

   

   
         

   
X X

 

  

(A.8) 

Now, suppose that  for some y , we need to show that there exists a 

y such that 
  
F y,q

1( ) ¹ F(y,q
2
).  Now, by assumption for 1 2,    such that 1 2   

and  we have: 

. (A.9) 

For an arbitrarily small y  define . Then we have: 

            (A.10) 

Similarly, we have: 

             (A.11) 

Then 

        21 1 2, , , ,F y F y f y f y y       . (A.12) 

Since    1 2, , 0f y f y    (except for a finite number of points, in which case we 

choose y y ) we have . 

QED 

Lemma A.5. When 
  
lim
n®¥

q
n

=¥ , then 
  
lim
n®¥

f y,q
n( ) = 0 for all y , (except possibly on 

a set of measure zero with respect to 
  
F y,q

0( ) ). 



33 

 

Proof. Since there is a lower bound on  ,   and b  we only have to consider 

  
lim
n®¥

q
n

=¥ for positive values of the parameters.  We have two cases to consider.  First 

suppose that i 
 
at the same rate or faster than   and b .  Then 

   
s -1(y-a - X

i
b)  

is bounded or goes to zero.  But, then: 

   

lim
i®¥

1

s
n

exp
y- X

i
b

n
-a

n

s
n

ì
í
î

ü
ý
þ
® 0 "y.              (A.13) 

Otherwise, if 
 a ,b ®¥ , we also have 

   
exp s -1(y-a - X

i
b){ }® 0  and the result is 

trivial.  Now, 
  
a + X

i
b ³ y  and q ®¥  are sufficient to handle the possible negative 

values of   and b  because in this specific case we must have    at a faster rate 

than 
 
a ,b ®¥. 

QED 

Lemma A.6. 

  -¥

¥

ò | ln f ( y,q
0
) | dF( y,q

0
) £ M < ¥  for the true 0 . 

Proof. Using the continuity of the exponential distribution, we have 

   0 0, ,dF y f y dyθ θ  and by definition we also have 
   
y £a

0
+ X

i
b

0
, so 

(A.14) 

The first term is clearly bounded.  Note also that 

   

lim
y®-¥

1

s
0

y- X
i
b

0
-a

0( ) ×exp
1

s
0

y- X
i
b

0
-a

0( )
ì
í
î

ü
ý
þ
® 0 . (A.15) 

Thus we can rewrite the last term as follows:  
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  (A.16) 

The first term is clearly finite, while the second is easily shown to be finite by simple 

integration. 

QED 

Lemma A.7.  , |f y 
 
is a measurable function of y  for all   and  . 

Proof. Note that since   is closed then for   'N      , either  N   

or 
 
is entirely in the parameter space and clearly both are compact. From 

the definition of ( , )f y  , we know that  , |f y   is well defined and, using the 

compactness of  N  , this function assumes its maximum for the smallest   in 

 N   (or ). Let us denote this value as . Since 

 N   is compact, min  is a limit point of this set.  Then, for such a min  the 

supremum of 

 (A.17) 

is reached for the largest 
  
y-a - X

i
b  possible. When possible, we choose   and b , 

such that 
   
y-a - X

i
b = 0, with  , N    (or ). For any other y  we 

have by definition that 
   y-a - Xb £ 0 .  Now, if 

   
y-a - X

i
b < 0  for all 

, then we let    and b = b , the largest value of 
  
y-a - X

i
b . 

Thus,  , |f y   is either constant or decreasing and in both case continuous except 

possibly for finitely many points.  Consequently,  , |f y   is measurable. 

QED 
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Proof of Proposition 3.2. By Lemma 1, the exponential specification ensures that 

Assumption 1 of Wald (1949) is satisfied since the cumulative distribution is absolutely 

continuous.  Since our parameter space is closed, Wald’s Assumption 7 is satisfied. 

Lemmas A.2 à A.7 verifies the other assumptions.  Consequently, by Wald’s Theorem 

2, we have the consistency of our estimator. 

QED 

A.2 The half-normal case 

Recall that the half-normal density in our problem is defined as: 

   
f y,q( ) = f y,a ,b ,s

2( ) = 2 ps
2( ) exp -1 2s

2( )( y-a - Xb )
2{ }  (A.18) 

where 
 
q = a ,b ,s 2( ).  Using the same definition as in the previous subsection, given 

0   and all  q'  such that 
 
q -q ' £ r , define  

 (A.19) 

and let 
  
f * y,q | r( ) be as in equation (A.3).  Given 0r  , define  

   

j y,r( ) := sup
q

f (y,) = sup
a ,b ,s

2

2ps
-

1

2s 2
( y-a - Xb )2ì

í
î

ü
ý
þ

, (A.20) 

And let  * ,y r  be as in equation (A.5). 

Lemma A.8. The cumulative distribution  ,F y   is absolutely continuous.  

Proof. Identical to the proof of Lemma A.1.  

QED 

Lemma A.9. Let 
 
q

0
= (a

0
,b

0
,s

0
) be the true parameter vector and given sufficiently 

small   and sufficiently large r , then the expectations 

   -¥

a
0
+Xb

0

ò ln f
*

y,q | r( )dF( y,q
0
) and 

   -¥

a
0
+Xb

0

ò lnj
*
( y,r )dF ( y,q

0
) 

 are finite when evaluated with respect to the true probability measure, i.e. 
  
F y,q

0( ) . 



36 

 

Proof. Requires only minor adjustment to the proof of Lemma A.2.  

QED 

Lemma A.10. For all convergent sequence 
 
q

i{ } , 
  
lim
i®¥

q
i
=q , we have for all y , 

  
lim
i®¥

f (y,q
i
) = f (y,q). 

Proof. Identical to the proof of Lemma A.3.  

QED 

Lemma A.11. Let q1
 and q2

, be two different parameter vectors, q1 ¹ q2
.  Then 

F(y,q1) ¹ F(y,q2 ) for at least one y. 

Proof. Identical to the proof of Lemma A.4.  

QED 

Lemma A.12. If lim i
i 

θ , then  lim , 0
i

if y


θ  for all y . 

Proof. Since 
   
f y,q( ) = 2 / ps 2 exp -(y-a - Xb)2 / 2s 2{ }  and the fact that 

   
y-a - Xb s( )

2

 is bounded above for all admissible combination of  (a ,b ,s 2 ) , then 

   
exp - y-a - Xb( )

2

/ 2s 2{ } is bounded above when 
2

i   or when 

  
 (a

i
,b

i
,s

i

2 ) ®¥ .  Consequently: 

   

lim
|| (a i ,bi ,s i )||®¥

2

ps
i

2
exp

-1

2s
i

2
(y-a

i
- Xb

i
)2

ì
í
ï

îï

ü
ý
ï

þï
® 0  "y. (A.21) 

QED 

Lemma A.13. For the true parameter vector, , we have that 

  -¥

¥

ò | ln f ( y,q
0
) | dF( y,q

0
) £ M < ¥ .  

Proof. It requires only minor modifications to the proof of Lemma A.6.  

QED 

Lemma A.14. 
  f (y,q | r) is a measurable function of y  for all q  and  . 

Proof. It requires only minor modifications to the proof of Lemma A.7.  
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QED 

Proof of Proposition 3.4. Replace Lemmas A2 to A7 by Lemmas A8 to A14 in the 

proof of Proposition 3.2. 

QED 
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Table 4.1: Description of the variables 

 Variable Symbol Data Description Sources 

Output Kilometer Y KMTURV10 Kilometers, including empty trips 

(total passenger activity) 

EAE 

Variabl

e 

Inputs 

Labor Quantity 

(L) 

TOTEFF Total employment (full time 

equivalent)  

EAE 

Price (wL) DL/L Cost of labor for the employer Calculated 

Expenditu

res (DL) 

RCH31+RCH32

+RCH26 

Sum of wages, taxes and external 

labor subcontracting  

EAE 

Fuel Quantity 

(E) 

DE/WE Total fuel. Calculated 

Price (wE) Price index CPI – All households continental 

France – Fuel. 

INSEE 

Expenditu

res (DE) 

ACHACARB Fuel total expenses EAE 

Maintenance Quantity 

(ENT) 

DENT/WENT Maintenance Calculated 

Price 

(wENT) 

Price index CPI- All households continental 

France –  Car repair 

INSEE 

Expenditu

res (DENT) 

RCH28S2(REPA

RTOT) 

Maintenance total expenses EAE 

Material Quantity 

(M) 

DM/WM Materials Calculated 

Price (wM) Laspeyres Price 

index 

Laspeyres price index computed 

from the Input-Ouput matrix 

Calculated 

Expenditu

res (DM) 

RCH701+RCH71

+RCH25+RCH2

8S4-

ACHACARB-

RCH26 

Material total expenses EAE 

Quasi-

Fixed 

Inputs 

Number of bus KB BUS+BUSA Number of buses used EAE 

Number of bus KC1 CAR10 Buses, 9 seats or less EAE 

KC2 CAR20 Buses, 10 to 29 seats EAE 

KC3 CAR30 Buses, 30 to 49 seats EAE 

KC4 CAR40 Buses, 50 to 59 seats EAE 

KC5 CAR50    Buses, 60 seats or more    EAE 
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Infrastr

uctures 

Average speed Vti 
1

1

N

i

r

irVt VtN 



   
Average speed in employment zone 

i 

Computed 

Total length of 

highways 

Li 

1

ir

N

i

r

L L


  
Total road length in employment 

zone i 

CGDD 

Surface  STi SUP Area of employment zone i INSEE 

Distance  dij  Mapinfo Network 

Map 

Distance between the center of 

zone i and j 

Computed 

Congestion 

time 

tcon TIMEj Time wasted because of traffic 

jams r 

CGDD 

Goods flow Fij Fij Flow of goods in 2002 between 

zone i and j  

CGDD 

Infrastructures 𝐼𝑛𝑓𝑖 𝐼𝑛𝑓𝑖

= (
𝐿𝑖𝑉𝑖
𝑆𝑇𝑖

)

∗∑𝐿𝑗
𝑗

𝑒𝑥𝑝{−𝜈𝑑𝑖𝑗

− 𝛾𝑡𝑐𝑜𝑛𝑖𝑗} 

Accessibility index for 

employment zone i 

Computed 

Note: EAE is the Enquête annuelle des entreprises (French Annual survey of firms), INSEE is the 

Institut national de la statistique et des études économiques (the French National Agency for Statistics 

and Economic Studies), and CGDD is the Commissariat Général au Développement Durable (the 

Sustainable Development Agency of the French Governement). 
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Table 4.2: Descriptive statistics 

 Variable Symbol N 
Maximu

m 

Minim

um 

Standard 

error 
Mean Median 

Output 

Kilometer Y 2,554 
45,040,38

9 
10,886 

3,060,574.

48 

2,097,411.7

9 
1,183,424.50 

Variable 

expenditur

es 

DCOST 2,554 144,424 16.86 7,531.98 3,349.87 1,594 

Variable 

Inputs 

Labor 

L 2,554 1,957 2 121.37 67.89 36 

wL 2,554 80.86 0.50 7.42 26.19 26.13 

DL 2,554 94,433 1 4,444.43 1,931.42 916.50 

Fuel 

E 2,554 8,968.19 1.05 687.30 451.83 248.32 

wE 2,554 102.02 92.34 3.71 96.87 94.92 

DE 2,554 9,149 1 667.07 437.87 240 

Maintenan

ce 

ENT 2,554 3,997.19 1.78 251.84 141.56 69.47 

wENT 2,554 112.28 100 4.72 105.10 103.77 

DENT 2,554 4,488 2 267.11 149.16 73 

Material 

M 2,554 47,847.68 2.82 2,420.73 802.80 314.67 

wM 2,554 106.49 100 2.37 103.46 104 

DM 2,554 48,635 3 2,501.16 831.42 323 

Quasi-Fixed 

Inputs 

Number of 

bus 
KB 2,554 716 0 31.52 7.74 0 

Number of 

bus 

Kcar_p 2,554 43,020 0 3,341.86 2,393.96 1,395 

KC1 2,554 65 0 4.31 1.13 0 

KC2 2,554 127 0 6.20 2.05 0 

KC3 2,554 127 0 9.65 2.99 0 

KC4 2,554 682 0 37.74 14.65 0 

KC5 2,554 171 0 6.73 1.34 0 

Number of 

seats in  

vehicles 

KV 2,554 67,270 5 4,088.05 2,742.05 1,575 

Infrastructur

es 

Infrastruct

ures 
iInf   337 15.31 7.81 1.01 12.82 12.85 

Congestio

n time 
tcon 337 120.43 5.85 11.40 20.02 17.42 

Average 

speed 
Vti 337 116.41 37.74 12.54 69.01 68.67 
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Length Li 337 856.20 11.37 152.27 285.14 255.71 

Distance dij 
115,9

40 
1,044.28 8.61 191.81 395.60 386.20 

Surface STi 337 6,256.05 46.36 998.52 1,591.49 1,448.19 

Goods 

flow 
Fij 

116,2

81 

4,280,771.

20 
1 29,019.03 2,318.28 79.50 
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Table 4.3: Parameter estimates and their confidence intervals – Linear 

program 

 

Estima

ted 

parame

ter  

Bias 

Correct

ed 

estimat

es 

90%
I  

95%
I  

99%
I  

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

𝛼𝐿 0.903 -0.068 0.970 0.441 1.576 0.354 1.671 0.186 1.758 

𝛼𝐸 0.012 0.059 -0.047 -0.326 0.146 -0.388 0.151 -0.507 0.157 

𝛼𝐸𝑁𝑇 -0.038 0.040 -0.077 -0.225 0.014 -0.250 0030 -0.322 0.140 

𝛼𝑀 -0.042 0.039 -0.081 -0.375 0.056 -0.439 0.083 -0.559 0.237 

𝛼𝑉 -0.021 -0.038 0.017 -0.042 0.203 -0.042 0256 -0.281 0.393 

𝛼𝐼𝑛𝑓 2.264 -0.324 2.588 2.010 3.379 1.902 3.466 1.738 3.618 

𝛽𝐿𝐿 0.251 -0.026 0.277 0.198 0.419 0.191 0.454 0.167 0.520 

𝛽𝐸𝐸  0.063 -0.016 0.079 0.041 0.136 0.033 0.145 0.018 0.163 

𝛽𝐸𝑁𝑇𝐸𝑁𝑇  0.003 -0.003 0.006 -0.002 0.028 -0.028 0.034 -0.036 0.048 

𝛽𝑀𝑀 -0.002 0.000 -0.002 -0.012 0.014 -0.014 0.018 -0.018 0.026 

𝛽𝑉𝑉 0.007 0.001 0.005 -0.009 0.014 -0.014 0.016 -0.024 0.018 

𝛽𝐼𝑛𝑓𝐼𝑛𝑓 -0406 0.065 -0.472 -0.626 -0.227 -0.669 -0.202 -0.751 -0.177 

𝛽𝐿_𝐸 -0.094 0.013 -0.107 -0.170 -0.067 -0.181 -0.057 -0.191 -0.044 

𝛽𝐿_𝐸𝑁𝑇 -0.036 0.001 -0.037 -0.072 -0.008 -0.072 0.019 -0.075 0.038 

𝛽𝐿_𝑀 -0.017 0.000 -0.017 -0.035 0.016 -0.040 0.020 -0.058 0.032 

𝛽𝐿_𝑉 0.005 0.000 0.005 -0.013 0.018 -0.021 0.026 -0.044 0.036 

𝛽𝐿_𝐼𝑛𝑓 -0.086 0.016 -0.102 -0.174 -0.045 -0.201 -0.031 -0.248 0.016 

𝛽𝐸_𝐸𝑁𝑇 0.015 0.002 0.012 -0.007 0.029 -0.010 0.030 -0.015 0.030 

𝛽𝐸_𝑀 0.006 0.000 0.006 -0.005 0.013 -0.007 0.014 -0.012 0.021 

𝛽𝐸_𝑉 -0.009 0.006 -0.015 -0.026 -0.007 -0.029 -0.005 -0.035 -0.001 

𝛽𝐸_𝐼𝑁𝐹 0.028 -0.022 0.050 0.020 0.103 0.014 0.117 -0.005 0.143 

𝛽𝐸𝑁𝑇_𝑀 0.005 -0.001 0.005 -0.004 0.009 -0.007 0.009 -0.013 0.009 

𝛽𝐸𝑁𝑇_𝑉 -0.006 -0.002 -0.004 -0.012 0.016 -0.012 0.019 -0.013 0.031 

𝛽𝐸𝑁𝑇_𝐼𝑛𝑓 0.028 -0.003 0.031 0.007 0.055 0.003 0.056 -0.013 0.061 

𝛽𝑀_𝑉 0.002 -0.001 0.003 0.001 0.018 0.000 0.022 -0.003 0.035 

𝛽𝑀_𝐼𝑛𝑓 0.014 -0.001 0.015 -0.017 0.040 -0.023 0.050 -0.044 0.072 

𝛽𝑉_𝐼𝑛𝑓 0.007 0.007 0.000 -0.042 0.014 -0.052 0.014 -0.084 0.070 

The first column contains the original estimates,  ˆ
iBbias   is the bootstrap estimate of the bias, the 

third column contains the corrected estimates, and finally the %I  are the bounds of the confidence 

intervals of size   for 90%,95%,99%  .  
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Table 4.4: Parameter estimates and their confidence intervals – Quadratic 

program 

 

Param

eter 

Estima

tes  

Bias  

Corre

cted 

estim

ates 

90%
I  

95%
I  

99%
I  

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

𝛼𝐿 0.901 0.035 0.866 0.389 1.373 0.333 1.460 0.237 1.594 

𝛼𝐸 0.007 0.003 0.004 -0.399 0.208 -0.495 0.232 -0.607 0.269 

𝛼𝐸𝑁𝑇 -0.009 0.027 -0.035 -0.161 0.091 -0.186 0.176 -0.227 0.233 

𝛼𝑀 -0.042 0.058 -0.100 -0.396 0.066 -0.433 0.114 -0.490 0.202 

𝛼𝑉 -0.023 0.041 -0.063 -0.045 0.260 -0.088 0.303 -0.342 0.380 

𝛼𝐼𝑛𝑓 2.241 -0.142 2.384 1.807 2.578 1.679 2.709 1.475 2.901 

𝛽𝐿𝐿 0.251 -0.072 0.323 0.245 0.446 0.240 0.482 0.218 0.547 

𝛽𝐸𝐸  0.063 -0.008 0.071 0.036 0.139 0.032 0.145 0.018 0.160 

𝛽𝐸𝑁𝑇𝐸𝑁𝑇  0.004 -0.004 0.008 -0.008 0.024 -0.025 0.034 -0.030 0.042 

𝛽𝑀𝑀 -0.002 0.000 -0.002 -0.013 0.014 -0.015 0.016 -0.019 0.020 

𝛽𝑉𝑉 0.007 0.006 0.001 -0.013 0.014 -0.016 0.014 -0.023 0.014 

𝛽𝐼𝑛𝑓𝐼𝑛𝑓 -0.398 0.013 -0.411 -0.583 -0.209 -0.616 -0.164 -0.668 -0.132 

𝛽𝐿_𝐸 -0.094 0.006 -0.100 -0.164 -0.061 -0.176 -0.053 -0.196 -0.033 

𝛽𝐿_𝐸𝑁𝑇 -0.036 0.007 -0.043 -0.073 0.002 -0.075 0.016 -0.078 0.034 

𝛽𝐿_𝑀 -0.017 0.004 -0.021 -0.043 0.021 -0.048 0.023 -0.055 0.031 

𝛽𝐿_𝑉 0.005 0.001 0.004 -0.021 0.023 -0.028 0.027 -0.045 0.035 

𝛽𝐿_𝐼𝑛𝑓 -0.085 0.013 -0.098 -0.203 -0.034 -0.234 -0.021 -0.283 0.002 

𝛽𝐸_𝐸𝑁𝑇 0.016 0.002 0.014 -0.003 0.031 -0.006 0.033 -0.014 0.034 

𝛽𝐸_𝑀 0.006 0.000 0.006 -0.008 0.014 -0.010 0.016 -0.015 0.023 

𝛽𝐸_𝑉 -0.010 0.008 -0.017 -0.028 -0.007 -0.031 -0.005 -0.045 0.000 

𝛽𝐸_𝐼𝑁𝐹 0.029 -0.020 0.049 -0.003 0.090 -0.032 0.119 -0.040 0.122 

𝛽𝐸𝑁𝑇_𝑀 0.005 -0.001 0.005 -0.002 0.009 -0.003 0.009 -0.007 0.012 

𝛽𝐸𝑁𝑇_𝑉 -0.006 -0.006 0.000 -0.012 0.019 -0.012 0.023 -0.015 0.030 

𝛽𝐸𝑁𝑇_𝐼𝑛𝑓 0.021 0.003 0.018 -0.005 0.043 -0.014 0.049 -0.031 0.053 

𝛽𝑀_𝑉 0.003 -0.006 0.008 0.001 0.026 0.000 0.028 -0.002 0.035 

𝛽𝑀_𝐼𝑛𝑓 0.014 -0.002 0.017 -0.018 0.048 -0.026 0.055 -0.040 0.064 

𝛽𝑉_𝐼𝑛𝑓 0.007 0.018 -0.011 -0.059 0.015 -0.066 0.030 -0.086 0.080 

The first column contains the original estimates,  ˆ
iBbias   is the bootstrap estimate 0f the bias, the 

third column contains the corrected estimates, and finally the %I  are the bounds of the confidence 

intervals of size   for 90%,95%,99%  .  
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Table 4.6: Confidence intervals for the returns to scale 

Translog 
Estimate

s 
Bias  

Correcte

d 

estimates 

90%
I  

95%
I  

99%
I  

Lowe

r 

bound 

Uppe

r 

boun

d 

Lowe

r 

bound 

Uppe

r 

boun

d 

Lowe

r 

bound 

Upper 

bound 

Inf  

Linear 

program  

Median 1.258 -0.014 1.272 1.223 1.348 1.212 1.360 1.181 1.385 

Min 1.038 -0.042 1.080 1.026 1.110 1.018 1.179 0.977 1.220 

Max 1.562 0.119 1.443 1.234 1.663 1.223 1.700 1.216 1.752 

P25 1.193 -0.021 1.214 1.163 1.286 1.146 1.302 1.120 1.328 

P75 1.332 -0.015 1.347 1.257 1.447 1.239 1.461 1.190 1.479 

NoInf  

Linear 

program 

Median 0.932 0.007 0.925 0.847 0.989 0.843 1.026 0.827 1.080 

Min 0.707 -0.061 0.768 0.598 0.939 0.579 0.947 0.528 0.956 

Max 1.156 0.044 1.112 0.813 1.278 0.801 1.321 0.752 1.351 

P25 0.890 0.002 0.888 0.808 0.955 0.804 0.969 0.792 1.033 

P75 0.977 0.013 0.964 0.830 1.069 0.828 1.090 0.811 1.124 

Inf  

Quadratic 

program 

Median 1.261 -0.019 1.280 1.233 1.353 1.228 1.360 1.207 1.380 

Min 1.033 -0.067 1.100 1.025 1.098 1.016 1.100 0.989 1.101 

Max 1.560 0.185 1.375 1.223 1.628 1.217 1.662 1.212 1.702 

P25 1.195 -0.041 1.236 1.178 1.294 1.170 1.302 1.146 1.315 

P75 1.337 -0.009 1.346 1.273 1.446 1.264 1.454 1.233 1.467 

NoInf  

Quadratic 

program  

Median 0.931 -0.019 0.950 0.888 1.019 0.882 1.028 0.867 1.063 

Min 0.709 -0.012 0.721 0.559 0.851 0.545 0.873 0.529 0.910 

Max 1.150 -0.072 1.202 1.074 1.301 1.035 1.324 0.921 1.351 

P25 0.890 -0.009 0.899 0.822 0.963 0.817 0.977 0.805 1.010 

P75 0.975 -0.031 1.006 0.940 1.077 0.924 1.095 0.887 1.120 

The first column contains the original estimates,  ˆ
iBbias   is the bootstrap estimate of the bias, the 

third column contains the corrected estimates, and finally the %I  are the bounds of the confidence 

intervals of size   for 90%,95%,99%  .  
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FIGURE 1. Returns to Scale Histogram, with and without infrastructures, Linear Programming 

FIGURE 2. Returns to Scale Histogram, with and without infrastructures, Quadratic Programming 
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