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Abstract 

In this work, we estimate a cost frontier using a statistical semi-parametric approach. The 

development of this model is based on the frontier estimation approach proposed by Aigner 

and Chu (1968). The approach consists in specifying a functional form for the frontier, in this 

case a cost function, and then to compute the cost inefficiency based on an optimization 

criterion (either a linear or a quadratic program).  Although it has been shown that semi-

parametric models produce maximum likelihood estimators of the parameters, no standard 

errors for the coefficients are available. Ouellette et al. (2016) have shown the consistency of 

the estimator, however. Then, inference is conducted using a subsampling argument to derive 

empirical distributions for the parameters of the cost frontier and for all technology 

measurements of interest using simulation techniques similar to the bootstrap.  An empirical 

application of the method to the French bus transportations industry has been made.  A firm 

specific infrastructure index has been constructed for each firm based on an accessibility 

index capturing the road network and its congestion.  Our results show that French bus 

transportation firms are relatively well behaved and operate under increasing returns to scale. 

Infrastructures are shown to be a substitute to labor as an increase in the infrastructure index 

(more roads and less congestion) reduces the time spent by buses on the roads.  As a 

consequence, infrastructure has a negative effect on variable cost for these firms. The large 

firms are on average more cost efficient than the small ones. These results are statistically 

significant at either size 5% or 1% based on our simulation results. 

Keywords: Cost efficiency, Semi-parametric methods, Subsampling, French bus transportation, Quasi-

fixed inputs, Infrastructure. 

JEL Codes: C51, C61, D24, L25 
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1. Introduction 

Roughly, the measurement of cost-efficiency of firms consists in enveloping the observed cost, 

thereby creating a frontier to a set containing all the realized costs, and then measuring the 

distance between the observed performance of the firm and this estimated frontier.  This 

estimated cost frontier is assumed to be supported by a true frontier that bears a large number 

of economic concepts describing the technology of the firm.  For instance, the true frontier 

gives the lowest cost possible to produce a given output, and doing so it separates the feasible 

productions from those that are not.  It also reveals some information on the optimal input mix 

given the price of the production factors and, of crucial importance for analyst of an industrial 

structure, it can be used to measure the returns to scale of firms.  In an environment where all 

the inputs are under the direct control of the firms at decision time, information on input 

prices, output and cost is enough to assess the performance of firms.  However, it is rarely the 

case that firms control all their inputs at decision time, some are following a complex 

investment process and cannot be set to their optimal value instantaneously (capital often 

corresponds to this characterization) and sometimes they just do not control the inputs at all 

(public infrastructures have this characteristic).  In this paper, we are interested in measuring 

the cost efficiency of firms with these characteristics.  Our task is to assess the cost-efficiency 

and technology (in particular the returns to scale) of an intercity bus transportation industry.  

In this industry, the firms can usually control at decision time labor, gas and the likes but plan 

overtime the number of buses they will use and are totally dependent on the road network.  

Because the infrastructures are supplied by the State, it seems natural to try to determine to 

what extent the quantity is optimal or not.  To do so, returns to scale would turn out to be a 

good indicator of the performance of the industry. 

The characterization of the frontier rests on an axiomatic that provides some indication on 

what we should expect from the frontier itself.  This cost-frontier is not directly observable 

however and must be estimated.  This paper proposes to use a semi-parametric approach to 

estimate the frontier based on the method proposed by Aigner and Chu (1968).  This method 

in its original setting is fully deterministic and was mostly applied to production function.  

Here we propose to estimate a cost function using this method.  The deterministic represents 

an important limitation, but it has been shown that this estimator is in fact a maximum 

likelihood estimator.  Despite the fact that it was a maximum likelihood estimator, the method 

was abandoned in favor of stochastic frontier (SFA) because essential statistical properties 

were not proved and were shown to be difficult to implement.  However, Ouellette et al. 
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(2016) have shown the estimator to be consistent and they also proposed a way to conduct 

inference for the relevant statistics using sub-sampling.  We use here their approach to the 

production frontier to apply it to cost-frontier.   

We also address the infrastructure measurement in detail in this paper.  It is clear that the 

location of a firm in the network would impact its ability to deliver transportation service.  It 

determines its ability to get to the clients to transport and then to deliver them where they 

have to go.  Consequently, infrastructure is a compound of accessibility to the network and 

the extent of the network availability (including the congestion time).  To capture the firm 

specific effect of the infrastructure network we use an accessibility index that would account 

for all these features.  Application of our method on standard firm data with our infrastructure 

index shows that most of the firms operate under increasing returns to scale and that result is 

statistically significant.  This suggests that the firms in this industry are not operating at their 

optimal size and mergers are probably required.  It also suggests that infrastructures are the 

source of theses returns to scale, as they are not constraining the development of the industry.  

In fact, the source of the problem might be more in the regulated environment of the firms. 

2. The dual semi-parametric model. 

In this section we present the dual semi-parametric model.  It is an adaptation of the Aigner 

and Chu (1968) production frontier model to the dual environment where a cost frontier is 

estimated instead of a production frontier.  Suppose that firms produce an output, y, using P 

variable inputs, denoted xp for p = 1,…,P and Q quasi-fixed inputs, denoted kq for q = 1,…,Q.  

The technology of the firm is given by a transformation function 
   
f y,x,k( ) £ 0. Suppose that 

the price of the variables factors are available, we denote them as wp for p = 1,…,P and that 

the input markets are competitive, then this technology can be represented in the dual space 

by a variable cost function given by the solution to the following problem: 

C w,k, y( ) = min
x

wT x | f y, x,k( ) £ 0{ } .                          (2.1) 

The conditional factor demands are obtained from Shephard’s Lemma:  

   
x = x w,k, y( ) = C

w
w,k, y( ) .                                                                      (2.2) 

The cost returned by the cost function is the smallest cost reachable given the technology.  

We need now to relate these theoretical quantities to their empirical or observed equivalent.  It 

is important at this stage to single out the optimal behavior from the realized performance by 
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a firm.  Suppose that we can observe n firms, identified by the subscript i=1,…,n and define 

the observed or realized cost as: 

Ci

obs =
p=1

P

åw
p

obsx
ip

obs,   (2.3)  

where 
 
C

i

obs
 and x

ip

obs
 are the observed cost and quantity of input p  of firm i respectively and 

s

p

obw  is the observed price of input p.  As expected, in practice there will be a difference 

between the minimal theoretical cost and the observed cost.  There are two sources possible to 

explain this difference: measurement errors and optimization errors.  As both of these errors 

can have a purely stochastic component, it is clear that optimization errors could be associated 

to repeated bad management practices in an environment flawed by defective incentives.  

Suppose that the error structure is additive, the observed prices, inputs and the observed 

output are given by:1 

 
w

p

obs = w
p
+n

w
p

                                                                     (2.4) 

p p

obs

ip ip x xx x                                                                    (2.5) 

 
y

i

obs = y
i
+n

y
                                                                       (2.6) 

 
k

iq

obs = k
iq

+n
k

q

,                                                                    (2.7) 

where wp, ipx , kiq, and yi are the true values of the variable and quasi-fixed inputs and the 

output, respectively, nwp
 (resp. nxip

,nqiq
,nyi

) is the measurement error of variable wp
 (resp. 

xip,kiq,yi
), and 

 
e

x
p
 is the optimization error on variable input xp.  We assume there are no 

optimization errors on the prices ( ewp
= 0, "p ) as we assume the input market to be 

competitive.  Since the output and quasi-fixed factors are given at decision time, they are not 

subject to optimization errors.  Using these definitions, we can deduce the gap between the 

observed cost and the variable cost: 

   
C w,k, y( ) º wT x w,k, y( ) = Cobs - (wobs)T e

x
+n

x( )- xobs( )
T

n
w

+n
w

T (e
x
+n

x
)  (2.8) 

or, more conveniently: 

   
Cobs = C w,k, y( )+ (wobs)Tn

x
+ (xobs)Tn

w
-n

w

Tn
x

é
ë

ù
û + (wobs -n

w
)T e

x
.   (2.9) 

                                                      
1 The model we develop here follows Ouellette and Petit (2010). In this paper they also develop a multiplicative error model. 
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The observed cost is decomposed into three components; the minimal variable cost 

 , ,C yw k , the measurement errors 
   
n

c
= (wobs)Tn

x
+ (xobs)Tn

w
-n

w

Tn
x
, and the optimization 

errors, e
c

= (wobs -n
w

)T e
x
.  The deviation from the optimal costs is denoted c c    . 

Now, we have the elements to adapt the Aigner and Chu (1968) (hereafter A-C) production 

frontier estimation model to variable cost frontier.  From (2.9) we have: 

   
Cobs - C wobs -n

w
,kobs -n

k
, yobs -n

y
 ( )- e

c
-n

c
= 0.       (2.10) 

To implement A-C estimation procedure, we need a functional form for the cost function.  

Suppose it is linear in the parameters (a Cobb-Douglas or a translog functional form are good 

candidates, but let us keep it in its simplest form for the moment) so that we can rewrite 

equation (2.10) as follows:  

   
Cobs - (wobs -n

w
)T b

w
- yobs -n

y( )
T

b
y
- kobs -n

k( )
T

b
k

- e
c
-n

c
= 0. (2.11) 

As in A-C, suppose that measurement errors are null for all variables, i.e., 
  
n

w
= 0 ,

  
n

x
= 0 , 

  
n

k
= 0  and 

  
n

y
= 0 then we have 

   
n

c
= (wobs)Tn

x
+ (xobs)Tn

w
-n

w

Tn
x

= 0 and

   
n

c
= (wobs -n

x
)T e

x
=n

c
= (wobs)T e

x
. This leaves us with: 

   
Cobs - (wobs)T b

w
- yobs( )

T

b
y
- kobs( )

T

b
k

- (wobs)T e
x

= 0 . (2.12) 

Denote the optimization error term (or inefficiency) as 
   
e = (wobs)T e

x
 then impose the non-

negativity constraint on this term as in A-C, to get: 

   
Cobs - (wobs)T b

w
- yobs( )

T

b
y
- kobs( )

T

b
k

= e ³ 0 . (2.13) 

Now, the estimation procedure will consists in minimizing an aggregate of the optimization 

errors, for example e ii=1

n

å , by choice of bw,bk
 and by

 under the constraint that e i ³ 0  for 

all i =1,...,n.  

To illustrate the procedure, suppose that the variable cost function for P variable inputs, Q 

quasi-fixed inputs and S outputs is of the Cobb-Douglas type.  That is:  

  

C
i
= e

ao

p=1

P

Õw
pi

b p

q=1

Q

Õk
qi

-bs y
si

bqU
i

s=1

S

Õ ,                                     (2.14) 
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where 1iU   is the cost efficiency of firm i. Log-linearization of (2.14) gives: 

1 1 1

ln ln ln ln
Q S

i o p pi q qi s si i

p q s

P

C w k y    
  

       , (2.15) 

where lni iU 
 
is the non-negative optimization error term. 

To solve for the parameters, we need an optimization criterion, as we mentioned above.  A-C 

suggests two possible criteria.  The first criterion is to minimize the sum of the errors, e ii=1

n

å , 

by choice of bw,bk
 and by

 under the constraint that e i ³ 0  for all i =1,...,n  and the non-

negativity of the parameters and the input price homogeneity of the cost function.  This 

essentially leads to the following linear programming optimization problem: 

  

min
a ,b( )³0

i=1

n

åe
i
= min

a ,b( )³0
i=1

n

å lnC
i
- a

o
+

p=1

P

åb
r
ln w

ri
-

q=1

Q

åb
q
ln k

qi
+

s=1

S

åb
s
lnY

si

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

s.t.

lnC
i
- a

o
+

p=1

P

åb
r
ln w

ri
-

q=1

Q

åb
q
ln k

qi
+

s=1

S

åb
s
lnY

si

æ

è
ç

ö

ø
÷ ³ 0  "i

p=1

P

åb
r

= 1.

  (2.16) 

The other criterion proposed by A-C is to minimize the sum of the square of the optimization 

errors, under the same constraints as in the linear program.  This essentially leads to a 

quadratic programming problem.  That is:  

min
a ,b( )³0

i=1

n

åe
i

2 = min
a ,b( )³0

i-1

n

å lnC
i
- a

o
+

p=1

P

åb
r
ln w

ri
-

q=1

Q

åb
q
ln k

qi
+

s=1

S

åb
s
lnY

si

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

2

s.t.

lnC
i
- a

o
+

p=1

P

åb
r
ln w

ri
-

q=1

Q

åb
q
ln k

qi
+

s=1

S

åb
s
lnY

si

æ

è
ç

ö

ø
÷ ³ 0  "i

p=1

P

åb
r

= 1.

  (2.17) 

We are not restricted to use a Cobb-Douglas functional form, the only restriction we have so 

far, is that it has to be linear in the parameters.  In our application we will use a translog 

functional form.  Note also, that once we have the cost function, it is possible to estimate the 
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characteristics of the technology such as the returns to scale, the input and output flexibility, 

elasticity of substitution, etc.  

3. The Statistical Model 

The problem with the procedure proposed by A-C is that it is purely deterministic and 

consequently it is not possible to conduct any inference on the estimated parameters and the 

measured quantities that characterizes the technology of the firms.   It has been shown by 

Schmidt (1975) that both, the linear programming estimator and the quadratic programming 

estimator, are maximum likelihood estimators.  However, it has been shown by Greene (1980) 

that standard asymptotic methods cannot be used to characterize the estimators.  Ouellette et 

al. (2016) have shown however that the estimator is consistent and, in spite of the fact the 

asymptotic distribution cannot be ascertain, they have suggested a simulation procedure to 

obtain an empirical distribution of the parameters.  Consequently, those estimators can be 

used to for statistical inference.  The section present an estimator adapted from and the 

simulation procedure we used for statistical inference. 

3.1 Maximum Likelihood Estimation 

For all units i, with i=1,…,n, we suppose that the frontier is linear in the parameters, and we 

denote it i + X β , that all observed costs, 
 
C

i
, are on or above the frontier, and as in the 

previous section, i  is the cost inefficiency. This gives: 

  
C

i
= a + X

i
b + e

i
,  (3.1) 

where 
    
X

i
= X

i1
X

ik
é
ë

ù
û 

is a  1 k  vector of inputs for unit i , the scalar  a Î and the 

( 1)k   vector 
   
b = b

1
b

k
é
ë

ù
û

T

 are the parameters and the scalar i  is non negative.  

Keeping in mind that 
  
e

i
³ 0, it follows that 

  
C

i
³a + X

i
b .  The functional form is linear in 

the parameters, but not necessarily in the variables and is therefore compatible with a translog 

functional form. 2 

Suppose now that the inefficiency term is exponentially distributed.  That is, 

  
f e ,s( ) = (1/ s )exp(-e / s ) where  e > 0 and 0  .  The true parameter vector is  0 0    

so that 
   
e

i
= C

i
-a

0
- X

i
b

0
.  The log-likelihood is:  

                                                      
2 That is, X and C are not restricted to be in level.  When the functional form is a translog, we use the logarithm of the cost 

and of the prices, output and quasi-fixed inputs included in X.  
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s ,a ,b | y( ) = ln L s ,a ,b | y( ) = -nlns -

1

s
(C

i
-a - X

i
b)

i=1

n

å , (3.2) 

where 
    Ci

-a - X
i
b ³ 0, "i =1,… ,n. Solving the first order conditions for ˆ

n  and substituting 

back into equation (3.2) gives the concentrated likelihood function:  

    

c a ,b | y( ) = -nlnŝ
n
-

n

ŝ
n

ŝ
n

= -nln
1

n
(C

i
-a - X

i
b )

i=1

n

å
ì
í
î

ü
ý
þ

- n. (3.3) 

Maximizing 
   

c a ,b | y( )  consists in minimizing the first term under the non-negativity 

constraint on the i . But, this is equivalent to: 

  (3.4) 

This is exactly Aigner and Chu’s linear program.  As in Schmidt (1975) we have the 

following result: 

Proposition 3.1. The solution to equation (3.4) is a maximum likelihood estimator when the 

inefficiency terms follow an exponential distribution.  

This is an interesting result, but it is relevant only if we can use it to construct some inference 

for the estimated parameters.  Unfortunately, the standard proofs for consistency and 

asymptotic normality do not work here.  As was shown by Greene (1980) and Ouellette et al. 

(2016) the expectation of the score is not null and the Hessian matrix is singular.  

Consequently, showing consistency and asymptotic normality is not a simple endeavor.  

However, if we can show the consistency of the estimator, it might be possible to use re-

sampling methods to construct confidence intervals for the estimator, despite the fact that we 

do not have the asymptotic distribution.   

Ouellette et al. (2016) have shown that the estimator is consistent using Wald’s (1949) 

consistency proof of the maximum likelihood estimator.  In order to use this proof, assume 

that: 

Assumption 3.1. The parameter space, Θ , is closed and is a subset of    
k+2  such that for a 

positive scalar we have QÍ -M ,¥éë )
k+1

´ s ,¥éë )Í … k+2
 with s > 0 . 
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This assumption forces the exponential distribution to be well-defined for admissible i  (they 

are all positive).  It also implies that firms are inefficient on average and they cannot be all 

efficient.  In fact, efficiency is a probability zero event in this model.  The consistency result 

is given by the following proposition. 

Proposition 3.2. Let q = (s ,a,b) and define the maximum likelihood estimator,
 
q̂n

, as the 

argument that maximizes 
   
-nlns - (1/ s ) C

i
-a - X

i
b( )

i=1

n

å  subject to 
  
C

i
>a + X

i
b . That is: 

   

q̂
n

= argmax
a ,b ,s

-nlns -
1

s
C

i
-a - X

i
b( ) |C

i
³a + X

i
b

i=1

n

å
ì
í
î

ü
ý
þ

. 

Then, under Assumption 3.1, the maximum likelihood estimator ˆ
nθ  is consistent, 

  
plim

n®¥
q̂

n
=q

0
. 

Proof.  Ouellette et al. (2016). 

Let us consider the quadratic model of Aigner and Chu.  Suppose that i  follows a half-

normal distribution: 

 
2

2

2 2

2
, exp

2
f


 

 

 
  

 
,  (3.5) 

where  e ³ 0.  Given a sample of n firms, the log-likelihood is 

 (3.6) 

subject to the constraint that 
   
C

i
-a - X

i
b ³ 0 .  Borrowing the technic we used with the 

exponential distribution, it is easy to conclude that: 

Proposition 3.3. The solution to  is a maximum 

likelihood estimator when the cost-inefficiency is half-normal distributed. 

Again, we face the same problem we had with the exponential distribution; the consistency 

and asymptotic normality of the estimator cannot be proved using the standard method.  But 

we can use again Ouellette et al. (2016) result that shows that the estimator is consistent.   

Suppose that the following condition holds: 
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Assumption 3.2. The parameter space, Θ , is closed and is a subset of    
k+2  such that for a 

positive scalar M we have QÍ -M ,¥éë )
k+1

´ s 2,¥é
ë )Í … k+2

 with 2 0  . 

We have to allow for negative parameters because we might want to specify a translog 

production function.  This assumption imposes inefficiency for some units; this is due to the 

fact that the distribution cannot degenerate at zero.  As above, efficiency is a probability zero 

event.  Consequently: 

Proposition 3.4. Let q = (s ,a,b) and define the maximum likelihood estimator,
 
q̂n

, as the 

argument that maximizes the likelihood function: 

    
s

2
,a ,b | y( ) =

n

2
ln

2

p

æ

èç
ö

ø÷
-

n

2
lns

2
-

1

2s
2

i=1

n

å C
i
- a - X

i
b( )

2

 

under the constraint 
  
C

i
³a + X

i
b . Under Assumption 3.2, the maximum likelihood estimator, 

q̂n
, is consistent, i.e. 

  
plim

n®¥
q̂

n
=q

0
. 

Proof.  Ouellette et al. (2016). 

3.2 Inference in the Semi-Parametric Model  

In this sub-section we present an approach for statistical inference in the Aigner and Chu 

model.  We do not have the distribution of the parameters, but we know at least that they are 

consistent.  This feature allows us to simulate the DGP in order to deduce some statistical 

properties of the estimator.   

The crucial step is to generate pseudo-samples that are consistent with the DGP.  There are 

many methods, but the problem at stake here drives the procedure to be adopted.  We have to 

deal with the fact that the parameters of interest are on the boundary of the support of the 

random variable (the inefficiency).  Simar and Wilson (1998, 1999) and Andrews (2000) 

document this problem and it is well known that in these circumstances naïve bootstrap does 

not return consistent results.  Consequently, we follow Politis and Romano (1992, 1994) and 

use sub-sampling.  Bickel et al. (1997) and Andrews (2000) detail the properties of sub-

sampling.  

The re-sampling principle is as follows.  Suppose we have a sample of n  i.i.d. random vectors,

1 2( , , , )n X X X X , and an estimator,  1 2,ˆ , , n β β X X X . We wish to characterize the 
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precision of that estimator.  Since the empirical cumulative distribution NF  is a consistent 

maximum likelihood estimator of the true distribution, then it can be used to generate pseudo-

samples to estimate  1 2,ˆ , ,b b b b

m β β X X X  with m not necessarily equal to n.  In the 

bootstrap world, ˆ ˆb β β  would have the same distribution as ˆ β β  so that replicating B 

times the estimation on pseudo-samples can give us a set of values that approximate the true 

distribution.  In the case of sub-sampling, we choose pseudo-sample of size m strictly smaller 

than the size of the original sample, n.  For the convergence of the procedure we need that m 

satisfies m  and / 0m n   when n .  The pseudo-samples need not be drawn with 

replacement.  Politis, Romano and Wolf (1999) have shown that sub-sampling procedure 

converges under weaker conditions than the standard bootstrap.  Simar and Wilson (2011) 

show that a sub-sampling method would generate a consistent inference even if the frontier 

depends on the estimated parameters.  This is the procedure we apply.  

Before constructing the confidence interval, note that, in spite of the fact that the Aigner and 

Chu estimator is consistent, it is also biased in small samples.  Since the bias is given by 

  
Bias b̂

i
é
ë

ù
û

= E(b̂
i
) - b  we can correct it using sub-sampling as follows: 

  

Bias
B

b̂
i

é
ë

ù
û

= B-1

b=1

B

åb̂
i

b - b̂
i
,                                         (3.7) 

where B is the number of sub-samples generated.  The bias corrected estimate is: 

  

ˆ̂b
i
= b̂

i
- Bias

B
b̂

i
é
ë

ù
û

= 2b̂
i
- B-1

b=1

B

åb̂
i

b.                    (3.8) 

To construct the confidence intervals we follow the procedure proposed by Hall (1992a) and 

Efron and Tibshirani (1993).  We wish to construct a confidence interval for  b̂ - b .  Given 

the size of the interval,  , this consists in finding 𝑎𝛼 and 𝑏𝛼 such that: 

  
Pr -b

a
£ b̂ - b £ -a

a( ) = 1-a .  (3.9) 

The problem is that we do not know the probability distribution.  However, we know that 

when B tends to infinity, the following condition holds:  

  
b̂ - bé
ë

ù
û

P ~ b̂ b - b̂é
ë

ù
û

P.  (3.10) 
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So we are justified to use the empirical distribution   b̂
b - b̂  for b = 1,…,B to approximate the 

distribution of  b̂ - b .  Therefore, for each parameter i=0,…,k, sort the 
  
b̂

i

b(x, y) - b̂
i
(x, y) , b = 

1,…,B in ascending order and eliminate  2 100 %   elements at each end of the 

distribution.  The corresponding values of 
  
b̂

i

± a 2( )´100 %
- b̂

i
 are the empirical values of 

*a  

and 
*b .  In equation (3.9) replace 

*

αa  and 
*

αb  by a  and b , and 
 

b̂ - bé
ë

ù
û

 by 
  

b̂ *(x, y) - b̂é
ë

ù
û
, 

to obtain: 

  
Pr(-b

a

* £ b̂ - b
0

£ -a
a

* | x) »1-a .  (3.11) 

Finally, a (1  )-confidence interval is given by: 

  
b̂ + a

a

* £ b
0

£ b̂ + b
a

*
.  (3.12) 

In the following section we present an application of this methodology. 

4. Data 

We apply in this paper the methodology presented above on the French bus transportation 

industry.  We have excluded all public transit companies to focus on the inter-city 

transportation of passengers.  The data are for the period 2000-2004 and after homogenization 

of the data we obtain 2554 DMU, roughly 500 DMU per year. Note that it is not a panel, as 

firms entered, exited and restructured over that period, making it difficult to follow them over 

the entire period.  Excluding firms to obtain a balanced panel would have shrunk the sample 

considerably. 

We constructed our database mainly from two data sources.  Firstly, we obtained company 

data from the Annual Survey of Companies in the Transport Sector (ASCT), which is provided 

by the National Institute of Statistics and Economic Studies (INSEE).  ASCT is the only 

national survey on firms, and it was made by INSEE in partnership with the statistical offices 

of all departments in France.  It provides a range of information on the companies whose 

transport is the main activity.  Most of the information relates to the usual accounting results 

(turnover and its decomposition, account balances, investment, etc.).  It also provides 

information on the specific charges to transport such as kilometers driving, maintenance and 

repairs, insurance premiums, fuel purchases, etc.  The company database was completed with 

price indexes from INSEE.  Secondly, the data used to construct the road infrastructure index 

are obtained from French General Commission for Sustainable Development (GCSD). GCSD 
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provided us with a database that included the length of the highway network, the average 

speed of vehicles, congestion time, the distance between each study area (region, county, area 

of employment, municipalities, etc.), and the flow of goods between these areas.  

We have divided in two subsections the description of the database used.  The first subsection 

describes the source and method to construct the output, inputs, price and cost variables, 

which is the standard part of the database. The next subsection focuses on a less standard 

variable, the infrastructure index used to capture the firm specific access to the road network.   

4.1 Prices, Quasi-fixed Inputs and Output 

The production process used in this paper is divided into two types of inputs, variable inputs 

(which can be adjusted by firms instantly) and quasi-fixed inputs (for which the quantity 

cannot be adjusted in short term).  For the variable inputs, we require prices variables while 

for the quasi-fixed we need quantities.  Given data availability, we have used two variable 

inputs, labor and a material aggregate, two quasi-fixed inputs, capital and infrastructures, and 

an output. 

The definition of the inputs closely follows the tradition in the transportation literature. The 

firms’ variable inputs are labor and an aggregate of different component coming from the 

operating budget.  Variable cost is then the sum of the labor and material expenditure.  

Consequently, we need to have two of the following variables: price, quantity and expenditure 

for each variable.  The labor price is traditionally measured by the wage, but this information 

is not directly available in our database. However, we have the total amount of payroll and the 

number of full-time equivalent employees.  Therefore, the ratio of these two variables gives 

us a reasonable approximate for the price of labor: 
 
w

l
= Payroll L.  The database includes 

expenditures for fuel (F), maintenance and repair (R&M), and materials and supplies (M&S), 

and no quantities.  Prices for these variables can be obtained from the INSEE and it is 

therefore possible construct a complete database.  However, the prices would be the same for 

all firms in every years in ours sample.  This causes some problems for the estimation 

procedure (in fact the optimization algorithm failed to find a solution most of the time), so we 

have decided to aggregate these three components of the cost and construct a firm specific 

price as a weighted sum of the price indexes, using cost shares as weights.  This procedure 

gives us a form specific materials price which is used in the production process for a company: 

  
w

M
= w

F
S

F
+ w

R&M
S

R&M
+ w

M&S
S

M&S
          (4.1) 
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where  & &/ , , & , &i i F R M M SS E E E E i F R M M S    , is the cost share of variable input i 

in the sum of “other” variable cost.  The quasi-fixed inputs are the stock of capital and the 

infrastructure used by the companies in the production process.  The capital stock of a bus 

transportation company is mainly the buses they use in production (although it may include 

some buildings and parking spaces for buses).  We use for capital the transportation potential.  

That is, capital must be related to the number of buses and their number of seats.  One way of 

doing this, it to compute the number of seats available.  To do so, we use a weighted sum the 

number of buses using the number of seat as weight to reflect their size. This represents the 

total number of vehicle seats for each company.  This new variable is then used as an 

approximation of capital in our cost function.  Since we focus on road infrastructure, variables 

on the road network characteristics are required. To capture the service provided by road 

infrastructures, we have decided to use an accessibility indicator in our analysis.  The 

computation of this index is discussed in the next section.  Finally, the variable cost is given 

by the sum of the payroll, the fuel expenditures, the repair and maintenance expenditures and 

the material and supplies expenditures. 

The last component of the cost function is the output.  There are many desirable alternatives, 

like the number of passengers per kilometer or the total passenger kilometers.  Unfortunately, 

our database remains silent on these options, so we have used the total number of kilometers 

the vehicles have travelled, loaded or not.  This has the virtue of capturing the management of 

the routes and services supplied to customers, in particular on charter routes. 

4.2 Infrastructure as an accessibility index 

For a bus transportation company, it is not so much the infrastructure availability that is 

required as much as its accessibility.  A congested road network of a given size does not offer 

the same service as a non-congested network of the same size.  Consequently, an 

infrastructure input must be able to reflect this accessibility to the network.  The literature is 

not shy on indexes that can the benefits to companies of transport infrastructure at the regional 

level.  One of the most popular indicators in transportation economics is the market potential, 

which is a gravity-based measure.  It has been extensively used (see, for example, Keeble et al. 

(1988), Bruinsma and Rietveld (1993), Schürman et al. (1997), López et al. (2008)) in the 

transportation literature, but never in the productivity analysis.  The market potential index 

relates positively the economic benefit of the origin node, denoted i, to the ‘mass’ of 
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destination node j and is inversely proportional to the distance or travel time between these 

nodes.  That is: 

 

A
i
=

j

åOp
j
f d

ij( )              (4.2) 

where Ai is the economic benefit (services provided by the road infrastructure in our case) for 

the companies in the zone i, Opj represents the opportunities offered by destination j (quantity 

and quality of road infrastructures) and f is a decreasing resistance function of the distance 

between origin i and destination j. 

Our purpose here is to build an infrastructure index that represents the service generated by 

road infrastructure relative to a point of origin.  For our index we use employment zone, this 

is the smallest partition of France with all the required information to construct the index. 

This index should be the combination of the amount of infrastructure in the reference zone 

and the access to potential interconnections between different zones. Consequently, we should 

take into consideration some important elements. Firstly, although it should include the 

quantity of infrastructure such as road length, the size of the zone should also be considered: 

the larger the zone is, the less infrastructure service the firm can get from a given network size. 

Secondly, when we measure the potential accessibility the distance between the origin and the 

destination provides the service but it is counter-balanced by congestion time.  In other words, 

for a given distance, the time spent on the road gives the quantity of service one can get from 

the infrastructure.  If we put together these two components, we get an indicator that takes 

into account the characteristics of the infrastructure in the origin, Ri1, and a resistance function 

between the origin i and destination j including time spent traveling, and quantity of 

infrastructure in destination Ri2.  Our indicator is measured as 

  

Inf
i
= R

i1
R

i 2
=

Len
i
Sp

i

Ar
i j

åLen
j
exp{-nd

ij
-g t

ij

con}         (4.3) 

with 
  
R

i1
= Len

i
Sp

i
/ Ar

i
 and 

  
R

i 2
= Len

j
exp{-nd

ij
-g t

ij

con}
jå , where, iL  is the total road length 

in i, Spi represents the average road speed, Ari is the total land area of zone i, 
ijd  is the 

distance between i and j, 
con

ijt  is the average time lost due to congestion, and   and   are 

parameters to be estimated. 

To estimate the parameters n  and g , we use a double-constrained gravity model.  In this type 

of model, the only variables used are the distance and congestion time between two zones. 
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The flows of goods in and out of the origins are assumed equal and constitute the two 

constraints in the model. The model formulation is as follows: 

ij i i j j ijF a O b D C          (4.4) 

where Fij is the flow of goods between i and j, iO  is the total observed goods out of zone , 

i ij

j

O F ; jD  is the total in flow of goods at destination j , j iji
D F .  

  
a

i
= 1/ b

j
D

j
C

ijiå  

and 
  
b

j
= 1/ a

i
O

i
C

ijjå  are the adjustment coefficients associated to iO  and jD , respectively, 

and finally  con

ij jij idC t
 

  denotes the resistance function that depends on the distance and 

congestion time.  As it is standard in the literatures (Flowerdew and Aitkin (1982), 

D’Aubigny et al., (2000), Griffith and Fischer (2013), the parameters are estimated using a 

Poisson regression. The advantage of the Poisson regression in our case is to duly weight 

small flows whose role is often exaggerated by the methods of log-linear adjustment. The 

most important feature of the Poisson regression is that it ensures that the in-flow and out-

flow constraints are met for all zones.  

Table 4.1 presents the exact description of the variables used for the infrastructure index, 

while Table 4.2 presents the descriptive statistics for the entire database. 

[INSERT TABLE 4.1 HERE] 

[INSERT TABLE 4.2 HERE] 

5. Results 

In this section we present the results of an application of our A-C cost frontier estimation 

procedure to the bus passenger transportation in France.  The biggest advantage of this 

procedure over a nonparametric method resides in the fact that we are using a parametric 

frontier, allowing us to deduce and compute easily the technology characteristics.  

Consequently, we start by defining the quantities we will put our focus on and then we present 

the results.  Nonetheless, our main attention is on returns to scale, as it allows us to look at 

potential improvement of the industrial structure. 

The cost frontier is assumed to be a translog functional form.  

i
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where 0  is the constant, 
   
w

p
= w

L
,w

M( )  are the variable input prices (Labor and Materials) 

( , )s V Infk  are the quasi-fixed inputs (vehicles and infrastructures) and the parameters 

satisfy the symmetry requirement: ' 'pp p p   , 
  
g

qq'
= g

q'q
 and 

 
g

pq
= g

qp
. The estimates of the 

parameters are obtained from the solution of the optimization problems given by equation 

(2.16) and (2.17) by replacing the cost function by Equation (5.1).  We also impose some 

other regularity conditions, such as the price homogeneity: 
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The variable input shares and the cost elasticity of output must be positive: 
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The cost elasticity of the quasi-fixed factors must be negative, that is:  
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5.1 The technology measures. 

The cost frontier allows us to compute for each firm its efficient cost, and obviously it is the 

observed cost projection on the frontier.  Consequently we have fi = Ci

obs / Ĉi
 where Ĉi

 is the 

projected cost on the frontier given the prices, the quasi-fixed inputs (including infrastructure) 

and the output.  That is, Ĉi
 is the efficient cost.  The aggregate cost inefficiency is given by:  

f =
i=1

N

åf
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´ C

i

obs C
j
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å
æ

è
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ö

ø
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,            (5.6) 

where   is the average efficiency for the industry.  Using (5.3) we can easily deduce that the 

variable input share elasticity of capital is given by: 
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The quasi-fixed inputs introduce a positive bias for input p  when 0
p sS k  , negative when 

0
p sS k   and neutral when 0

p sS k  .  This is of particular interest to understand the effect of 

the infrastructure.  The effect of a quasi-fixed factor change on output is given by:  
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The impact of a change in vehicles of infrastructure on the (conditional) demand of variable 

input p is given by:3 
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Short-run and long-run returns to scale are respectively given by:  
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5.2 Estimation results 

The estimated parameters are presented in Table 5.1.  The table includes the estimated value, 

the bias, the corrected estimates and finally confidence intervals of size 90%, 95% and 99%.  

The confidence intervals contain all the information necessary to determine when a parameter 

is significant.  Note that the procedure does not return standard errors, but they are not 

necessary since we have the full distribution of the estimates (that can even be skewed).  All 

input parameters are significant at 1%, including capital and infrastructure.  As mentioned 

above, some regularity conditions have been imposed on the estimation, so the cost function 

is homogenous of degree one in the input prices, increasing in the output and the input prices 

and decreasing in the quasi-fixed inputs.  The two methods (the linear and quadratic 

minimization programs) return parameter estimates that are fairly similar, so the optimization 

                                                      
3 Nadiri and Mamouneas (1994) first used this formula to measure this impact. 
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program is not consequential on the results, a desirable property.  It is worth noting that the 

functional form plays a crucial role (we have estimated Cobb-Douglas as well as the Translog 

cost functions and the difference is striking). 

Table 5.1 presents the cost elasticities.  That is, the two variable input shares, the cost output 

elasticity, the quasi-fixed input elasticities of cost and the infrastructure elasticity of output as 

defined by Equation (5.3)-(5.5) and (5.8).  The numbers are average over the sample of firms.  

The optimization criterion is again a non-factor as the results a virtually identical for all 

elasticities.  Labor cost dominates the cost of the firms.  From the estimate of Cy  we have 

that a 1% increase of the output translates into a cost increase between 1.19% and 1.29%.  

This shows that the short-run constraint in the adjustment of the quasi-fixed factors plays an 

important role.   From CV  and CInf  we see that increasing the number of bus reduces the cost 

by 0.33% while the impact of an increase of 1% of the infrastructure is of an order of 0.54%.  

The last column of Table 5.2 gives the effect of an increase of 1% of the infrastructure on the 

output.  The effect is positive and non negligible (a magnitude of slightly more than 0.4%).  

This conforms the role played by the infrastructure in production process of the firm. 

Table 5.2:  Cost elasticities. 

 
𝑆𝐿 𝑆𝐾 Cy  CV  CInf  yInf  

Linear program 0,777 0,223 1,188 -0,330 -0,552 0,465 

Quadratic program 0,795 0,205 1,288 -0,329 -0,537 0,417 

 

As suggested above, the infrastructure play a non-negligible role, suggesting that it might be 

interesting to investigate it more deeply.  Using Equation (5.8) and (5.9) we can investigate 

the impact of increasing the public infrastructure on the variable inputs and quasi-fixed input 

(the vehicles). We say the infrastructure are substitutable, independent and complementary to 

the variable xp if _p Inf  is respectively smaller, equal or larger than zero.  Table 5.3 presents 

these calculations. The results show that materials are complementary to the infrastructure 

while labor is substitutable.  The result is not that clear cut for the vehicles.  Under the linear 

program it exhibits substitutability while under the quadratic program it is a complementarity, 

so the optimization criterion does play a role here.  This might be explained by the fact that 

this relationship depends on second order terms that are estimated with a weaker precision.  If 

we conclude that the effect of infrastructure is neutral on vehicles (the values under each 
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program are of the same magnitude but of opposite sign) it is possible to conclude that better 

infrastructure reduce congestion time and thus requires less labor, but because it has a positive 

effect on output, more gas and maintenance is required for the given stock of vehicles.   

Table 5.3:  Infrastructure external input elasticities 

 
𝜏𝐿_𝐼𝑛𝑓 𝜏𝑀_𝐼𝑛𝑓 𝜉𝐿_𝐼𝑛𝑓 𝜉𝑀_𝐼𝑛𝑓 𝜉𝑉_𝐼𝑛𝑓 

Linear program -0.647  2.256 -1.199 1.704 0.406 

Quadratic program -0.313 1.215 -0.850 0.678 -0.400 

 

Returns to scale are computed using Equations (5.10) and (5.11).  Table 5.4 presents the 

estimated results while the distribution of the returns to scale are displayed on Figure 5.1 and 

5.2.  Among the main features of the returns to scale, we note that the short run returns to 

scale are dominant as only 18.3% (17.4%) of the firms exhibit increasing returns to scale 

under the linear program (quadratic program).  So, in the short run, most of the firms do 

operate under decreasing returns to scale.  Note that the third quartile is equal to 0.953 under 

the linear program and 0.899 under the quadratic program.  Finally, the median is 

significantly different than one at 95% when using the linear program, however this is not true 

with the quadratic program.  In that latter case, it seems that firms operate for a large number 

of them under an optimal scale (the returns to scale are not significantly different than one).  

The story is totally different when one considers the long run returns to scale.  That is, when 

vehicles and infrastructure are included in the calculation, almost all firms operate under 

increasing returns to scale (95.5 % for the linear program and 99.6 % in the quadratic case).  

Even the first quartile is significantly different than one (and clearly, greater than one), 

confirming that most firms operate under increasing returns to scale.  

To summarize our analysis, when we take into account the presence of the infrastructure in 

the production process of the French bus transportation firms, the industry is largely 

characterized by increasing returns to scale, for all criteria for the optimization program and 

all test size.  It means that it is more costly to supply the same quantity using two firms than 

using one.  That is, one firm would produce at a lower cost the same quantity produced by 

two firms.  It is then desirable or inevitable that the concentration must increase in this 

industry so that economies of scale can be exploited.  Therefore, the industry would benefit 

from a restructuring by reducing the number of firms.  
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To conclude this section, let us look at efficiency.  By construction, the efficiency scores are 

larger than one because we envelope the data from below giving us a lower envelope of the 

data.  Consequently, all cost inefficient observations are located above the frontier.  The cost 

inefficiency scores and the average cost efficiency are defined by Equation (5.6).  The 

efficiency analysis is summarized in Table 5.5.  The main result is that, no matter the 

optimization criterion, firms can lower their cost on average by 11.9% while keeping output 

constant.  This confirms the relative efficiency of this industry.  It is also interesting to note 

that the performance of the firms changes with their size.  Our results show that larger firms 

tend to be more efficient than smaller one.  While the largest firms are virtually efficient, the 

smallest are more than 20% less efficient, confirming that size matters in this industry.  To 

illustrate that fate, we have formed groups of 127 firms (representing 5% of the sample) and 

drawn the relationship between their size (measured by the turnover) and the efficiency score.  

These are presented on Figure 5.3 and 5.4.  The negative slope is clear, as firms increase in 

size, they become more efficient. 

Table 5.5: Cost efficiency 

 Translog 

 Linear 

Program 

Quadratic 

Program 

𝛉 1.122 1.120 

𝑵̇ 49 

𝛉 Smallest 5 %  1.236 1.233 

Largest 5 %  1.056 1.060 

Note:   is the weighted average efficiency score, 𝑁̇  is the 

absolute value of the difference between the efficiency ranking of 

the firms based on the criteria used to solve for the efficiency.    

 

6. Conclusion 

In this paper we have used a statistical Aigner and Chu model applied to cost data to estimate 

a cost frontier.  We have included quasi-fixed factors to account for the fact that capital (buses) 

and infrastructures are either slow to adjust or simply not under the control of the firm.  This 

allowed us to recover the main characteristic of the technology. 

We have applied this methodology to inter-city bus transportation firms in France.  We where 

able to account for the infrastructure and build an index that captured firm specific access to 

the road network, accounting average speed, congestion and the likes.   
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Our results show that firms are mostly cost-efficient, but operate under increasing returns to 

scale.  This shows that the industry is not at maturity and some restructuring has to take place 

in order to produce at a lower cost on average.  The nature of this inefficiency is not directly 

obvious but it seems that a large number of firms benefits from public contracts and those are 

regulated under somewhat specific conditions that prevent firms from exploiting all their 

opportunities.  This still has to be explored, but there is clearly a link to be explored between 

the State intervention in the industry and this inefficient operation scale. 
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Figure 5.2 Returns to Scale with and without infrastructure, Quadratic Program 

Figure 5.1 Returns to Scale with and without infrastructure, Linear Program 
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Figure 5.3 Relation between cost efficiency and turnover, Linear Program 

Figure 5.4 Relation between cost efficiency and turnover, Quadratic Program 
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Tables. 

Table 4.1: Description of the variables 

Variable Symbole Données Description Sources 

Average speed Spi 

  
Sp

i
= N-1 Sp

irr=1

N

å  
Average speed in employment zone i Computed 

Total highway lengths Leni 

  
Len

i
= Len

irr=1

N

å  
Total road and highway length in employment zone i CGDD 

Area  Ari SUP Area of employment zone i INSEE 

Distance  dij  Mapinfo network map Distance the centroid of employment zones i and j Computed 

Congestion time tcon TEMPSj Time lost due to congestion on road r CGDD 

Goods flow Fij Fij Annual good flow in 2002 between zone i and j  CGDD 

Infrastructure index 𝐼𝑛𝑓𝑖 (
𝐿𝑒𝑛𝑖𝑆𝑝𝑖
𝐴𝑟𝑖

) ∗∑𝐿𝑒𝑛𝑗
𝑗

𝑒𝑥𝑝{−𝜈𝑑𝑖𝑗 − 𝛾𝑡𝑐𝑜𝑛𝑖𝑗} 
Accessibility index for employment zone i Computed 

 

 

Table 4.2 : Descriptive statistics 

 Variable Symbol Maximum Minimum 
Standard 

error 
Mean Median 

Output and cost 
Kilometers Y 45 040 389 10 886 3 060 574,48 2 097 411,79 1 183 424,50 

Variable cost DCOUT 144 424 16,86 7 531,98 3 349,87 1594 
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Variable Input 

Labor 

L 1 957 2 121,37 67,89 36 

wL 80,86 0,50 7,42 26,19 26,13 

EL 94433 1 4 444,43 1 931,42 916,50 

Fuel 

F 8 968,19 1,05 687,30 451,83 248,32 

wE 102,02 92,34 3,71 96,87 94,92 

EF 9149 1 667,07 437,87 240 

Repair and 

maintenance 

R&M 3 997,19 1,78 251,84 141,56 69,47 

WR&M 112,28 100 4,72 105,10 103,77 

ER&M 4 488 2 267,11 149,16 73 

Material and supplies 

M&S 47 847,68 2,82 2 420,73 802,80 314,67 

WM&S 106,49 100 2,37 103,46 104 

EM&S 4 8635 3 2 501,16 831,42 323 

Quasi-fixed 

Inputs 

Number of city bus KB 716 0 31,52 7,74 0 

Number of bus 

Kcar_p 43 020 0 3 341,86 2 393,96 1 395 

KC1 65 0 4,31 1,13 0 

KC2 127 0 6,20 2,05 0 

KC3 127 0 9,65 2,99 0 

KC4 682 0 37,74 14,65 0 

KC5 171 0 6,73 1,34 0 

Number of seats KV 67 270 5 4 088,05 2 742,05 1 575 

Infrastructures 

Infrastructure Infi 15,31 7,81 1,01 12,82 12,85 

Congestion time tcon 120,43 5,85 11,40 20,02 17,42 

Average speed Spi 116,41 37,74 12,54 69,01 68,67 
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Length Leni 856,20 11,37 152,27 285,14 255,71 

Distance dij 1 044,28 8,61 191,81 395,60 386,20 

Area of zone i Areai 6 256,05 46,36 998,52 1 591,49 1 448,19 

Flow of goods Fij 4 280 771,20 1 29019,03 2318,28 79,50 
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Table 5.1: Parameter estimates and statistical inference – linear and quadratic program 

 Estimates Bias 
Corrected 

estimates 

90% Interval 95% Interval 99% Interval 

Inf Sup Inf Sup Inf Sup 

Linear Program
 

LW  0,607 -0,264 0,871 0,483 0,962 0,472 0,980 0,433 1,000 

KW  0,393 -0,036 0,429 0,038 0,517 0,020 0,528 0,000 0,567 

V  1,732 -0,300 2,032 1,482 2,315 1,463 2,463 1,305 2,582 

Inf  -1,325 -0,456 -0,869 -1,5192 -0,6288 -1,649 -0,574 -1,762 -0,310 

y  -2,217 -0,277 -1,940 -2,4472 -1,819 -2,684 -1,516 -2,910 -1,302 

2WL


 -0,261 -0,076 -0,185 -0,532 -0,236 -0,665 -0,163 -0,825 -0,032 

2WK


 -0,261 -0,076 -0,185 -0,532 -0,236 -0,665 -0,163 -0,825 -0,032 

2V


 0,079 -0,029 0,108 0,020 0,095 0,016 0,158 0,012 0,221 

2INF


 1,203 -0,192 1,395 1,142 1,518 1,082 1,696 0,811 1,959 

_WL WK
 0,261 0,076 0,185 0,163 0,532 0,136 0,665 0,032 0,825 

_WL V
 

-0,002 0,002 -0,004 -0,011 0,005 -0,018 0,008 -0,023 0,019 

_WL Inf  -0,503 0,171 -0,674 -0,731 -0,475 -0,974 -0,339 -1,208 -0,203 

_WK V
 0,002 -0,002 0,004 -0,05 0,011 -0,08 0,014 -0,19 0,003 

_WK Inf  0,503 -0,171 0,674 0,475 0,731 0,339 0,974 0,203 1,208 
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_V Inf  -0,316 0,016 -0,331 -0,505 -0,157 -0,631 -0,131 -0,782 -0,079 

2y


 
0,205 -0,194 0,399 0,137 0,281 0,125 0,302 0,119 0,373 

_WL y  0,094 0,000 0,094 0,009 0,217 0,008 0,260 0,007 0,304 

_V y  -0,083 -0,007 -0,076 -0,125 -0,064 -0,166 -0,046 -0,206 -0,028 

_Inf Y  -0,134 0,131 -0,265 -0,178 -0,075 -0,182 -0,063 -0,221 -0,038 

Quadratic program 

WL
 0,453 -0,309 0,762 0,147 0,692 0,113 0,961 0,089 1,00 

WK
 0,547 -0,112 0,659 0,308 0,853 0,039 0,887 0 0,911 

V  1,257 -0,415 1,672 1,088 1,440 1,014 1,839 0,855 2,012 

INF
 -1,625 -0,156 -1,468 -1,714 -1,530 -1,822 -1,166 -1,969 -0,913 

y  -1,750 -0,418 -1,332 -1,867 -1,196 -1,884 -0,978 -1,955 -0,636 

2WL


 0,119 -0,185 0,304 0,077 0,400 0,059 0,511 0,052 0,631 

2WK


 0,119 -0,185 0,304 0,077 0,400 0,059 0,511 0,052 0,631 

2V


 0,082 0,094 -0,012 -0,063 0,103 -0,074 0,142 -0,096 0,195 

2Inf
  

0,939 -0,228 1,168 0,819 0,989 0,756 1,173 0,632 1,288 

_WL WK
 -0,119 0,185 -0,304 -0,400 -0,077 -0,511 -0,059 -0,631 -0,052 

_WL V
 

0,008 0,043 -0,035 -0,181 0,163 -0,212 0,207 -0,301 0,239 

_WL Inf  -0,249 -0,040 -0,209 -0,736 -0,146 -0,987 -0,101 -1,402 -0,079 

_WK V
 -0,008 -0,043 0,035 -0,163 0,181 -0,207 0,212 -0,239 0,301 
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_WK Inf  0,249 0,040 0,209 0,146 0,736 0,101 0,987 0,079 1,402 

_V Inf  -0,045 -0,012 -0,033 -0,111 -0,007 -0,130 -0,006 -0,163 -0,004 

2y


 
0,208 0,100 0,108 0,046 0,236 0,037 0,270 0,030 0,330 

_WL y  0,039 0,042 -0,003 0,026 0,145 0,015 0,208 0,009 0,296 

_V y  -0,103 0,083 -0,111 -0,233 -0,097 -0,253 -0,089 -0,288 -0,057 

_Inf y  -0,063 0,043 -0,106 -0,166 -0,058 -0,233 -0,046 -0,306 -0,028 
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Tableau 5.4: Returns to scale 

 Estimate Bias 
Corrected 

estimates 

90% Interval 95% Interval 99% Interval 

Inf Sup Inf Sup Inf Sup 

Linear 

program 

 
h

without

E
 

Median 0,833 0,012 0,821 0,760 0,900 0,747 0,912 0,713 1,093 

Min 0,527 0,054 0,473 0,331 0,607 0,303 0,634 0,287 0,653 

Max 1,700 0,047 1,653 1,718 1,789 1,550 1,808 1,474 1,866 

P25 0,728 0,075 0,653 0,583 0,789 0,578 0,826 0,559 0,857 

P75 0,953 -0,11 1,063 0,900 1,071 0,893 1,128 0,863 1,176 

Linear 

program 

 
h

with

E
 

Median 1,514 -0,021 1,535 1,491 1,579 1,463 1,641 1,336 1,681 

Min 0,765 0,031 0,734 0,671 0,929 0,660 0,971 0,569 1,015 

Max 2,57 0,134 2,436 2,469 2,592 2,258 2,631 2,142 2,712 

P25 1,262 0,145 1,117 1,055 1,297 1,036 1,323 0,989 1,351 

P75 1,789 -0,209 1,998 1,704 1,793 1,690 1,868 1,634 1,947 

Quadratic 

program 

 
h

without

E
 

Median 0,796 0,016 0,780 0,727 0,920 0,677 1,096 0,642 1,154 

Min 0,485 0,044 0,441 0,426 0,838 0,403 0,872 0,374 0,924 

Max 1,692 0,047 1,645 1,461 1,750 1,439 1,955 1,407 1,967 

P25 0,706 0,082 0,624 0,610 0,730 0,600 0,816 0,587 0,822 

P75 0,899 -0,152 1,051 0,776 0,930 0,704 1,139 0,677 1,185 

Quadratic 

program 

 
h

with

E
 

Median 1,465 -0,018 1,483 1,267 1,548 1,257 1,631 1,215 1,701 

Min 0,869 0,025 0,844 0,600 1,508 0,331 1,542 0,107 1,676 

Max 2,501 0,11 2,391 2,159 2,587 2,127 2,890 2,079 2,908 

P25 1,294 0,165 1,129 1,117 1,339 1,100 1,495 1,076 1,505 

P75 1,655 -0,200 1,855 1,429 1,712 1,407 1,912 1,376 1,924 
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