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Abstract 

Pesticide marginal products inform us, on the one hand, on the intensity of their use (allowing us 

to determine over- or under-optimal utilization) and, on the other hand, it tells us what the cost of 

a quantity regulation of pesticides would be in terms of lost production.  The objective of this 

paper is to measure the marginal product of pesticides in order to guide pesticide regulation.  

Measuring marginal products requires that we estimate the production frontier of the underlying 

production process.  In this paper, we propose a method that takes into account two major 

features of agricultural production processes that are rarely addressed together.  First, we consider 

a multi-output production process, which is a standard characteristic of the production process of 

the vast majority of farms, but that is often neglected.  We also reckon with the fact that 

pesticides are not standard productive inputs, as they do not directly produce outputs.  Pesticides 

are pest managers and used to reduce the damages caused to the crops and so their role is to 

protect the potential output.  This leads us to make the distinction between effective inputs and 

standard inputs.  This allows us to capture the interaction between all production factors in a 

realistic way.  We adapt this approach to pesticides to a flexible functional form (translog) that 

we estimate using a multi-output Bayesian stochastic production frontier.  We derive the 

marginal product of pesticides for the farms located on the frontier.  This methodology is applied 

to a sample of farms from the Eure-et-Loir département (French administrative region) for the 

period 2005-2008. The results show that farms in this area tend to use a suboptimal level of 

pesticides. 

Keywords: Pesticides, marginal products, stochastic frontier analysis 

JEL classification: Q12, Q18, Q52, C11 
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1. Introduction 

Over the last fifty years, agriculture was successful at increasing global food production. 

Pesticides have played a major role in driving this growth, alongside with other technological 

innovations (e.g. development of irrigation and harvesting technologies).  In particular, pesticides 

enhance production performance (prevent and/or reduce damage caused by pests and diseases) 

and allow farmers to reduce the use of other relatively more expensive inputs, such as labor.  This 

has allowed the industry to spread their use and make pesticides uses a common practice.   

 However, the widespread use of pesticides was soon to raise some concerns on the side effects 

(verified empirically or not) they may have on wildlife and humans.  We can trace these concerns 

back to 1960 with the publication of Silent Spring by Carson [1962] and Pesticides and the living 

landscape by Rudd [1964].  These authors have pointed out some of the potential risks related to 

pesticide use.  Several studies have followed this path and have shown that, amongst others, 

pesticides play an important role in the pollution of surface water (Sharpley et al. [2001]) and 

may have a negative (lagged) effect on organisms that are beneficial for the farm (e.g. Wilson 

and Tisdell [2001], Skevas et al. [2013]).  Verified negative side effects or precautionary 

principle have led governments to discuss and introduce policies with the objective of reducing 

pesticide use.  For example, in France, the plan Ecophyto2 aims to reduce pesticide consumption 

by 50% between 2015 and 2025.  

The objective of this paper is to measure the marginal product of pesticides in order to give some 

guidance on the cost of pesticide regulation.  Indeed, in order to implement a sound pesticides 

reduction plan, we need to understand the mechanism supporting their use at the farm level, and 

specifically their contribution to the farms’ return.  To this end, marginal products constitute a 

natural tool. 

Measuring marginal products requires that we estimate the production frontier of the underlying 

production process.  There are many problems to solve before achieving this objective.  In this 

paper, we propose a method that takes into account two major characteristics of farming that are 

never or rarely considered jointly.  First, we consider a multi-output production process, which is 

rarely addressed in the (parametric) marginal product literature of farms, despite the fact that it 
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characterizes the production process of the vast majority of farms.  Second, we reckon with the 

fact that pesticides are not standard productive inputs, as they do not directly contribute to output 

production.  Pesticides are pest managers and used to reduce the damages caused to the crops and 

so their role is to protect the potential output (see Lichtenberg and Zilberman [1986], Carpentier 

and Weaver [1997], Zhengfei et al. [2005], Karagiannis and Tzouvelekas [2011], Böcker et al. 

[2018] for applications with pesticides modeled as damage reducing input).  Thus, in light of this 

literature, it is important to make the distinction between effective inputs and standard inputs 

while modelling the production process.  In doing so, we capture the interaction between all 

production factors in what we believe to be a more realistic way.  

To achieve this double objective, we specify a multi-input-multi-output production process, 

where the output aggregator is separable from the input management process.  Following 

Carpentier and Weaver [1997], we propose an input specification that accounts for the difference 

between standard and damage reducing inputs.  That is, the pesticides are introduced through a 

multiplicative input specific exponential quadratic function.  This functional form allows us to 

identify downturn points (which characterize over-optimal use of pesticides).  This function is 

inserted into a translog production function.  We are able to show that, in spite of the nonlinear 

structure, the functional form linearizes so that all the parameters are identified, allowing us to 

infer pesticides specific effects for each individual input.  

One more complication that we have to deal with is the fact that farms are not all using the best 

practice.  When a farm is not efficient, the concept of marginal product is not well defined and 

usually cannot be measured meaningfully.  In fact, marginal product is a concept well defined 

only on the production frontier.  The only relevant information on the marginal product will 

derive from the behavior of the farms located on the frontier.  To estimate the production frontier 

accounting for firms’ inefficiency, we use a multi-output stochastic frontier.  The estimation 

procedure derives from Fernandez et al. [2000] Bayesian estimation procedure. This 

methodology is applied to a sample of farms from the Eure-et-Loir département (French 

administrative region) for the period 2005-2008.  
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2. Pesticides and effective input 

The estimation of pesticide marginal products in production processes started with Headley 

[1968] and has since raised many questions on how pesticides should be modeled.  Essentially, 

the debate has been over the choice of functional form needed to capture the ‘true’ effect of 

pesticides.  For a long time, these have been introduced in the specification as any other standard 

inputs.  They were either substitutes or complements to the other inputs like any others and 

furthermore they had their own specific effect on the production.  Lichtenberg and Zilberman 

[1986] claimed however, that when pesticides are introduced as standard input in the 

specification of the production function (as in Headley [1968], Carlson [1977], etc.) their 

marginal products are biased upward since in a world with no pests, pesticides are useless and do 

not contribute to production.  Clearly, pesticides only protect the production and do not create it.  

The resulting strategy was to model the pesticides as damage reducing inputs, so they only 

indirectly affect the efficiency of the other inputs.  Consequently, it created a real issue 

concerning the functional form of the damage reduction function and how it must be integrated 

into the input functional form. 

2.1. Damage reduction function 

The damage reduction function is part of a production process that we now describe.  A farm 

produces outputs, 𝐲 ∈ ℝ+
n , with standard inputs, 𝐱 ∈ ℝ+

m and pesticides, 𝐳 ∈ ℝ+
s .  We suppose 

that all inputs are under the control of the farmers at decision time.  Before specifying the 

relationship between the inputs and outputs and how pesticides are related to the production 

process, we address the problem of interpreting formally the role of pesticides. 

Following Lichtenberg and Zilberman [1986], we model pesticides as damage reducing inputs.  

These inputs do not have a direct effect on the production, as their role is to protect the crops 

from pests and other factors that may reduce the returns.  Pesticides are usually modeled using a 

function that relates the quantity of pesticides used (𝐳) and pest pressure (𝐫).  The damage 

reduction function, 𝜙(𝐳, 𝐫), is a mapping defined as: 

𝜙: ℝ+
s × ℝ+

m → [0,1].                                                                                                                                    (1) 



6 

 

When the damage caused by the pest is maximal 𝜙 goes to zero, and when there is no damage the 

function is equal to one, 𝜙(𝐳, 𝐫) = 1.  It is assumed that there exists a quantity of pesticide, 𝐳∗, 

such that 𝜙(𝐳∗, 𝐫) = 1.  Lichtenberg and Zilberman [1986] assumed that 𝜙(∙) is an increasing 

function of z and tends to its maximum, 𝜙(𝒛∗, 𝐫) = 1.  This last assumption may be too strong 

however, as the pesticides may have a negative effect on the production past a given threshold, 

and thus may be decreasing in 𝐳.  Following Carpentier and Weaver [1997] such a function must 

satisfy the following requirements: 

Property 1. The damage reduction function 𝜙(𝐳, 𝐫) satisfies: (𝑖) 𝜙(𝐳, 𝐫) is continuously 

differentiable; (𝑖𝑖) 0 ≤ 𝜙(𝐳, 𝐫) ≤ 1 and in particular 0 ≤ 𝜙(0, 𝐫) ≤ 1; (𝑖𝑖𝑖) 𝜙(0,0) = 1 and 

𝜙(𝐳, 0) ≤ 1 with 𝐳 ≥ 0 (𝑖𝑣) 𝜕𝜙(𝐳, 0)/𝜕z𝑘 ≤ 0 ; 𝜕𝜙(0, 𝐫)/𝜕r𝑜 ≤ 0; (𝑣) 𝜕𝜙(𝐳, 𝐫)/𝜕ro ≤ 0 for 

all 𝐳 and 𝜕𝜙(𝐳, 𝐫)/𝜕z𝑘 ≥ 0 for some 𝐫; (𝑣𝑖) For all 𝐫 there exists a 𝐳 such that 𝜙⋆ =

max𝑧𝜙(𝐳, 𝐫) = 𝜙(𝐳⋆, 𝐫). 

The first and second properties tell us that pests may reduce output, but not necessarily, and that 

damages are possible with and without pesticides.  The third property tells us that when there is 

no pest, we get the full production if no pesticides are used, but using pesticides might reduce the 

production.  The fourth property tells us that increasing pesticides with no pest present may 

reduce the output, while increasing pest pressure would result in damages.  Note that 𝜕𝜙(𝐳, 0)/

𝜕z𝑘 ≤ 0 is often neglected.  Property (v) tells us that, given a quantity of pesticide, increasing the 

pressure increases the damages and that, for some pest pressure, pesticides will always reduce the 

damage.  In practice, a monotonic relationship is specified, as pesticides cannot damage the 

crops.  In this paper, we will suppose that this relationship is not necessarily monotonic.  That is, 

for a given pest pressure, we may reach a pesticide level that will damage the crop.  This property 

is essentially summarized by property (𝑣𝑖). 

In practice, the functional forms mostly used are the Pareto, exponential and Weilbull distribution 

functions.  Lichtenberg and Zilberman [1986] and Carpentier and Weaver [1997], Karagiannis, 

and Tzouvelekas [2011], among others, used the exponential function.  In the simple case of one 

type of pesticide and no pest pressure, we have: 

𝜙(z) = 1 − exp{−𝜙0 − 𝜙1z} with 𝜙0 ≥ 0, 𝜙1 ≥ 0.                                                                            (2) 
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This specification systematically returns a positive contribution to output, eliminating the 

possibility of pesticides overdosage that would destroy the crop.  A possible alternative is the 

function proposed by Zhengfei et al. [2005]: 

𝜙(z) = exp{−(𝜙0 + 𝜙1z)2}.                                                                                                                      (3) 

This function is interesting because there is a threshold after which it is decreasing, reflecting the 

potential over dosage.  It has also an inflection point, implying that pesticides can have an initial 

accelerating contribution and then a decreasing marginal effect until it becomes negative after the 

threshold.  This function is illustrated on Figure 1.  The parameters are free to take any value and 

the maximal dosage, before negative effect is reached, is zmax = −𝜙0/𝜙1.  This function will be 

inserted in the production technology. 

[INSERT Figure 1 ABOUT HERE] 

2.2. Transformation function and pesticides 

The next step is to introduce the damage reducing function into the production process.  

Lichtenberg and Zilberman [1986] have proposed to introduce pesticides as damage reducing 

inputs and to model this input asymmetrically with respect to the standard inputs.  Essentially, in 

the case of a single output, we have: 

 y = ℎ(𝐱, 𝐳, 𝐫) = ℎmax(𝐱)𝜙(𝐳, 𝐫) ,                                                                                                             (4) 

where 𝜙(𝐳, 𝐫) is the output oriented damage reduction function, ℎmax(𝐱) is the maximum output 

that can be obtained from 𝐱.  This is Lichtenberg and Zilberman [1986] standard specification.  

Although the specification permits interaction between inputs, as the marginal product of any 

standard inputs depends on the quantity of pesticides, the marginal rate of substitution between 

these standard inputs is independent of the quantity of pesticides which is clearly not a common 

feature of agricultural production processes. 

Carpentier and Weaver [1997] have proposed a specification that does not carry this limitation. 

Instead of having pesticides affecting the production directly, they assume that the effectiveness 

of each standard input changes with the pest pressure and the quantity of pesticide used.  That is, 

x𝑖
𝑒 = 𝜙𝑖(𝐳, 𝐫)x𝑖 where x𝑖

𝑒 is the 𝑖𝑡ℎ effective input when one uses the quantity x𝑖 of regular input 

and pesticide quantities 𝐳 and facing pest pressures 𝐫.  Thus, we have: 
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y = ℎ(𝐱, 𝐳, 𝐫) = ℎ𝑒(𝜙1(𝐳, 𝐫)x1, . . . , 𝜙𝑚(𝐳, 𝐫)x𝑚) = ℎ𝑒(𝐱𝑒).                                                               (5) 

This specification is consistent with the expected results as the marginal products and the 

marginal rate of substitution all depends on the inputs and the pesticides used.  This is a complete 

specification of an agricultural production process taking into account the specificity of the 

pesticides in the production process.  However, farms are multi-output production units and this 

is not accounted for in this specification. 

Agricultural production processes are almost always multi-crops, a feature that is often neglected.  

Practitioners were either aggregating all outputs implicitly reverting to a single output production 

process model or they simply modeled each crop individually.  To take into account the multi-

output features of the production process, we also have the option of modelling the entire 

production process at once.  This is the approach we prefer and to do so we adapt the Carpentier 

and Weaver [1997] approach above to the multi-crop production process.  The generalization is a 

transformation function: 

𝐻(𝐲, 𝐱, 𝐳, 𝐫) = 0,                                                                                                                                            (6) 

in which we introduce the effective inputs, x𝑖
𝑒 = 𝜙𝑖(𝐳, 𝐫)x𝑖, to obtain: 

𝐻𝑒(𝐲, 𝐱𝑒) = 𝐻𝑒(𝐲, 𝜙1(𝐳, 𝐫)x1, . . . , 𝜙𝑚(𝐳, 𝐫)x𝑚) = 0.                                                                           (7) 

The estimation of this type of function represents a considerable challenge as the interaction 

between the individual outputs and the inputs increases in the dimensionality of the problem.  

One possible way out of this problem is to assume output separability.  This supposes that we 

have an output aggregator on the one hand and an input aggregator on the other hand.  Formally, 

we can write: 

𝐴(𝐲) = ℎ𝑒(𝜙1(𝐳, 𝐫)x1, . . . , 𝜙𝑚(𝐳, 𝐫)x𝑚) ,                                                                                               (8) 

where 𝐴(𝐲) is the aggregator function, ℎ𝑒 is the effective production function and the functions 

𝜙𝑖(𝐳, 𝐫) are the input oriented damage reduction functions.  This is the generalized Carpentier 

and Weaver specification used in our empirical analysis. 

To obtain an empirical specification for our model of the production process, we need to specify 

the aggregator and the production function.  We begin with the production side of the problem.  
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This implies obtaining an explicit specification for the estimated functional form that will 

encompass the standard inputs and the damage function. 

We use a translog functional form for the production technology of the m effective inputs, x𝑖
𝑒 

with 𝑖 = 1, . . . , 𝑚.  Applying this to Equation (8) we get: 

ln[𝐴(𝐲)] = ln[ℎ𝑒(𝜙1(𝐳, 𝐫)x1, . . . , 𝜙𝑚(𝐳, 𝐫)x𝑚)] = 𝛅(𝐱, 𝐳) 

= 𝛽0 + ∑ 𝛽𝑖 ln(x𝑖
𝑒)

𝑚

𝑖=1

+
1

2
∑ ∑ 𝛽𝑖𝑗

𝑚

𝑖=1
ln(x𝑖

𝑒) ln(x𝑗
𝑒)

𝑚

𝑗=1
.                                                                (9) 

For reasons that we will explain in the data section below, we assume that the pest pressure is 

uniform for all units, and can be ignored so that the damage reducing function depends only on 

the pesticides.1  We also assume that z is a scalar (only one pesticide) so that 𝜙𝑖(𝑧) is a scalar 

function.  The functional form for the damage reducing function is: 

x𝑖
𝑒 = x𝑖𝜙𝑖(𝑧) = x𝑖exp{−(𝜙0𝑖 + 𝜙1𝑖𝑧)2}  𝑖 = 1, . . . , 𝑚.                                                              (10) 

Substitution of equation (10) into equation (9) gives: 

𝛅(𝐱, z)

= 𝛽0 + ∑ 𝛽𝑖ln(x𝑖)

𝑚

𝑖=1

+ ∑ 𝛽𝑖ln(𝜙𝑖(𝑧))

𝑚

𝑖=1

+
1

2
∑ ∑ 𝛽𝑖𝑗[ln(x𝑖) + ln(𝜙𝑖(𝑧))][ln(x𝑗) + ln(𝜙𝑗(𝑧))]

𝑚

𝑗=1

𝑚

𝑖=1

.       (11) 

Regrouping terms gives a translog function linear in the parameters: 

𝛅(𝐱, z) = 𝜗0 + ∑ 𝛾𝑖ln(x𝑖)

𝑚

𝑖=1

+ ∑ ∑ 𝜋𝑖𝑗ln(x𝑖)ln(x𝑗)

𝑚

𝑗≥𝑖

𝑚

𝑖=1

+ ∑ 𝜓𝑖ln(x𝑖)z

𝑚

𝑖=1

+ ∑ 𝑤𝑖ln(x𝑖)z2

𝑚

𝑖=1

+ ∑ 𝜑𝑖z𝑖

𝑚

𝑖=1

, (12) 

where 𝜗0 = 𝛽0 − ∑ 𝛽𝑖
𝑚
𝑖=1 𝜙0𝑖

2 +
1

2
∑ 𝛽𝑖𝑖

𝑚
𝑖=1 𝜙0𝑖

4 + ∑ ∑ 𝛽𝑖𝑗
𝑚
𝑗>𝑖

𝑚−1
𝑖=1 𝜙0𝑖

2 𝜙0𝑗
2 , 𝛾𝑖 = 𝛽𝑖 − ∑ 𝛽𝑖𝑗

𝑚
𝑗=1 𝜙0𝑗

2 , 

𝑤𝑖 = −2 ∑ 𝛽𝑖𝑗
𝑚
𝑗=1 𝜙0𝑗𝜙1𝑗, and 𝜓𝑖 = − ∑ 𝛽𝑖𝑗

𝑚
𝑗=1 𝜙1𝑗

2 , 𝜋𝑖𝑖 =
1

2
𝛽𝑖𝑖 for 𝑖 = 1, . . . , 𝑚, 𝜋𝑖𝑗 =

𝛽𝑖𝑗  𝑖 = 1, . . . , 𝑚 − 1  and  𝑖 < 𝑗 = 2, . . . , 𝑚, 𝜑1 = −2 ∑ 𝛾𝑖
𝑚
𝑖=1 𝜙0𝑖𝜙1𝑖, 𝜑2 = − ∑ 𝛾𝑖

𝑚
𝑖=1 𝜙1𝑖

2 −

∑ 𝜓𝑖
𝑚
𝑖=1 𝜙0𝑖𝜙1𝑖, 𝜑3 = −2 ∑ 𝑤𝑖

𝑚
𝑖=1 𝜙0𝑖𝜙1𝑖, and finally 𝜑4 = −

1

2
∑ 𝑤𝑖

𝑚
𝑖=1 𝜙1𝑖

2 .  It is not necessarily 

                                                        

1 In our application we use data for a small region, so the farmers are all very likely to face a homogeneous pest 

pressure and this allows us to remove pest pressure from the specification. 
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obvious, but all parameters are identified, except for the sign of 𝜙1𝑖 and 𝜙0𝑖.  As it turns out, for 

all the quantities we need to estimate, the sign of these parameters does not interfere with the 

characterization of the results.  That is, 𝜙𝑖 = exp{−(𝜙0𝑖 + 𝜙1𝑖z)2} = exp{−(𝜙0𝑖
2 + 𝜙1𝑖

2 z2 +

2𝜙0𝑖𝜙1𝑖z)} and we directly get 𝜙0𝑖
2 , 𝜙1𝑖

2  and 𝜙0𝑖𝜙1𝑖. Consequently, we have all the necessary 

parameters to estimate the pesticide marginal product. 

Since we have: 

 
𝑑𝐴(𝐲)

𝑑z

1

𝐴(𝐲)
=

𝑑ln𝐴(𝐲)

𝑑z
 =

𝑑𝛅(𝐱, z)

𝑑𝑧
 .                                                                                                    (13) 

Using equation (12), the pesticide marginal product on the aggregate production is given by: 

𝑑𝐴(𝐲)

𝑑z
= [∑ 𝜓𝑖ln(x𝑖)

𝑚

𝑖=1

+ 2z ∑ 𝑤1ln(x𝑖)

𝑚

𝑖=1

+ ∑ 𝑖𝜑𝑖

𝑚

𝑖=1

z𝑖−1 ] 𝐴(𝐲).                                                    (14) 

Using the same logic, the marginal product of pesticides on output y𝑗, is obtained as follows: 

 
𝑑𝐴(𝐲)

𝑑y𝑗

𝑑y𝑗

𝑑z
=

𝑑𝛅(𝐱, z)

𝑑z
𝐴(𝐲),                                                                                                                     (15) 

so that: 

  
𝑑y𝑗

𝑑z
 = [∑ 𝜓𝑖ln(x𝑖)

𝑚

𝑖=1

+ 2z ∑ 𝑤1ln(x𝑖)

𝒎

𝒊=𝟏

+ ∑ 𝑖𝜑𝑖

𝑚

𝑖=1

z𝑖−1 ]  𝐴(𝐲) [
𝑑𝐴(𝐲)

𝑑y𝑗
]

−1

.                                (16) 

The marginal product of the standard input 𝑖 is given by: 

 
𝑑𝐴(𝐲)

𝑑x𝑖
=

𝑑𝛅(𝐱, z)

𝑑ln(x𝑖)

𝐴(𝐲)

x𝑖
= [𝛾𝑖 + ∑ 𝜋𝑖𝑗ln(x𝑗)

𝑚

𝑗=1

+ 𝜓𝑖𝑧 + 𝑤𝑖z
2]

𝐴(𝐲)

x𝑖
 .                                            (17) 

The marginal product of the input x𝑖 on the output y𝑗 is obtained by multiplying equation (17) by 

[𝑑𝐴(𝐲)/𝑑y𝑗]
−1

.  

A version of the CES functional form is our choice for the aggregator, 𝐴(𝐲), to model the output.  

That is: 
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𝐴(𝐲) = (∑ 𝛼𝑗
𝑞

𝑛

𝑗=1

y𝑗
𝑞)

1
𝑞

 ,                                                                                                                             (18) 

where 𝛼𝑗 ∈ (0,1) for 𝑗 = 1, . . . , 𝑛 and ∑ 𝛼𝑗
𝑛
𝑗=1 = 1.  The elasticity of substitution is 1/(1 − 𝑞).  

We impose 𝑞 > 1, so that increasing one of the output necessitate a reduction of another output 

to keep 𝐴(𝐲) constant.  Barnett (1985) has shown that the 𝐶𝐸𝑆 functional form is flexible for 𝑛 =

2, so we feel that using this specific function is not hurting the generality of our specification 

since we will be using two outputs in our application. 

3. Estimation procedure 

Now that we have specified the technology, we have to complete it with the operating 

circumstances of the farms.  It is common practice to allow farmers to operate under the 

production frontier, so that some inefficiency in the production process is possible.  Clearly, the 

marginal product is meaningful only for efficient farms as, for any inefficient unit, it is possible 

to arbitrarily change its output in any direction by changing its inputs.  For a firm located on the 

frontier, this is not possible however, as it is bounded by the frontier.  That is, the output change 

induced by increasing an input cannot exceed what the production frontier allows the farmer to 

do, and this what we refer to as the marginal product.  Consequently, the production frontier 

contains the only relevant information on the marginal products.  A Stochastic Frontiers Analysis 

(SFA) framework, introduced by Aigner et al. [1977] and Meeusen and Van den Broeck [1977], 

is implemented to estimate the frontier.  Essentially, we suppose that the model is made of three 

components: The frontier itself, an error term and technical inefficiency. 

The biggest challenge is to account for the multi-output technology.  The estimation procedure of 

such multi-output technologies typically involves factoring out one of the outputs or inputs and 

estimating the resulting equation using maximum likelihood methods (e.g. Lovell et al. [1994]). 

There is a problem of endogeneity in this setup, as the error terms might be correlated with the 

variables entering the frontier itself (see O’Donnell [2012]).  Fernandez et al. [2000] propose a 

Bayesian approach that does not require the factorization stage and and treats directly the 

endogeneity problem without having to use an instrumental variable method.  This procedure is 

applied to the transformation function specified in the preceding section.  The method requires a 
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specification for the data density and a prior distribution for each parameter.  The posterior 

distribution of each individual parameter is then deduced. 

Using the production structure defined in the previous section and introducing efficiency, we 

obtain the following model: 

𝐴(𝐲) = ℎ𝑒(𝐱, z)𝜏,                                                                                                                                        (19) 

where 𝜏 is the efficiency term, satisfying 0 ≤ 𝜏 ≤ 1, ℎ𝑒(𝐱, z) is a translog function representing 

the maximum output that can be produced using inputs 𝐱 and pesticides z.  The production 

surface is given by all possible production vectors 𝐲 such that 𝐴(𝐲) equals a constant and is of the 

CES type, as defined above (Equation (18)).  We are not restricted to this type of function for the 

aggregator, but this functional form allows us to specify independent prior distributions for 𝑞 and 

𝛂.  For given values of 𝛂, 𝑞 and 𝐴(𝐲), Equation (18) describes a surface of dimension (𝑛 − 1) 

corresponding to the vectors of dimension 𝑛 used to construct the aggregate production.  This 

aggregator allows us to reduce a multi-output problem to a single output problem so that a 

standard SFA specification can be implemented. 

Suppose that the error term is multiplicative, i.e. 𝐴(𝐲) = ℎ𝑒(𝐱, z)𝜏𝑒𝜀, then applying the 

logarithmic transformation on both sides of this equation leads to a standard SFA model: 

ln𝐴(𝐘) = 𝐕𝛃 − 𝐮 + 𝛆                                                                                                                                (20) 

where ln(ℎ𝑒(𝐱𝒅, z𝑑)𝜏𝑑𝑒𝜀𝑑) = 𝐕𝒅𝛃 − u𝑑 + ε𝑑, 𝐕𝒅 = 𝒗(𝐱𝒅) is a function (mostly logarithmic 

transformations and cross product) of the 𝑚 + 1 inputs (𝑚 standard inputs and one damage 

reducing input) for farm 𝑑, 𝛃 ∈ ℑ ⊆ ℝ𝑘, 2 𝐕𝒅𝛃 is given by Equation (12), 𝜏𝑑 = exp{−𝑢𝑑}, and ε𝑑 

is a standard noise defining the stochastic frontier.  Since 𝑑 = 1, . . . , 𝐷, 𝐕 = [𝑣(x1), . . . , 𝑣(x𝐷)]⊤ 

is a (𝐷 × 𝑘) matrix of independent variables, 𝐮 and 𝛆 are (𝐷 × 1) vectors and Y is (𝐷 × 𝑛) 

output matrix.  Technical inefficiency means that some observations are located under the 

production frontier.  That is, 0 ≤ 𝜏𝑑 ≤ 1 and 𝜏𝑑 = exp{−𝑢𝑑}, so that  𝑢𝑑 > 0 and 𝐮 > 0. 

We now have all the ingredients of the model (the production technology, the outputs and the 

inefficiency) so we have to construct the statistical model to estimate the parameters.  Because 

                                                        

2  Because 𝜋𝑖𝑗 = 𝜋𝑗𝑖, there are 27 independent parameters in Equation (12), so k=27. 
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there is no restriction on the sign of 𝛆, we assume that 𝜀𝑑 is identically and independently 

normally distributed for 𝑑 = 1, . . . , 𝐷 with variance 𝜎2.  The density function of 𝐕𝛃 − 𝐮 + 𝛆, 

given (𝛃, 𝐮, 𝜎), is: 

𝑝( 𝐕𝛃 − 𝐮 + 𝛆 ∣∣ 𝛃, 𝐮, 𝜎 ) = 𝑓𝑁
𝐷(𝐕𝛃 − 𝐮, 𝜎2𝐼𝐷)                                                                                    (21) 

where 𝑓𝑁
𝐷 is the multivariate normal distribution.  In spite of the fact that we have extended the 

SFA model to the multi-output case, we have yet to specify the density and the data generating 

process of the outputs, (𝐲𝑑 = (𝑦𝑑,1, . . . , 𝑦𝑑,𝑛)⊤).  That is, the model defined by (21) is good to 

characterize the likelihood of 𝐥𝐧𝐀(𝐲𝒅) = 𝐕𝒅𝛃 − u𝑑 + ε𝑑  but is silent on the distribution of the 

individual outputs, 𝐲𝑑. 

To complete the model we need to construct a relationship between the aggregate output and the 

individual components.  Instead of dealing directly with the individual outputs, we can as well 

deal with their respective weights in the aggregate, this will convey just about the same 

information for our needs.  Let these weights be denoted as 𝛈𝑑 = (𝜂𝑑,1, 𝜂𝑑,2, . . . , 𝜂𝑑,𝑛)⊤.  There 

exists a correspondence between the observed output vector 𝐲𝑑 ∈ ℝ+
𝑛  (𝐲𝑑 = (𝑦𝑑,1, . . . , 𝑦𝑑,𝑛)⊤), 

and the 𝑛 −vector (𝛿𝑑, 𝜂𝑑,2, . . . , 𝜂𝑑,𝑛)⊤ so that: 

𝑓𝑦(𝑦𝑑,1, 𝑦𝑑,2, … , 𝑦𝑑,𝑛) = 𝑓𝑁
𝐷(𝛿𝑑) × 𝑓( 𝜂𝑑,2, … , 𝜂𝑑,𝑛 ∣∣ 𝛿𝑑 ) ⋅ |𝐉|                                                          (22) 

where |𝐉| is the absolute value of the Jacobian of the transformation.  Now, because 0 ≤ 𝜂𝑑,𝑗 ≤ 1 

and ∑ 𝜂𝑑,𝑗
𝑛
𝑗=1 = 1, we assume that the 𝜂𝑑,𝑗  are jointly Dirichlet distributed.  The details of the 

derivation are given in Appendix A.   

Under the assumption that all farms are identically and independently distributed, we have the 

likelihood function of the model: 

𝑝(𝐘 ∣ 𝛃, 𝐮, 𝜎, 𝛂, 𝑞, 𝐬) = 𝑓𝑁(𝐕𝛃 − 𝐮, 𝜎2𝐼𝐷) × 𝑓𝐷𝑖𝑟.
𝑛−1( 𝛈𝑑 ∣∣ 𝐬 ) × ∏ 𝑞𝑛−1

𝑛

𝑗=1

∏
𝜂𝑑,𝑗

𝑦𝑑,𝑗

𝑛

𝑗=1

                       (23) 

To proceed to the estimation step, the model must completed with the parameter prior 

distributions, 𝛃, 𝐮, 𝜎, 𝛂, 𝑞 and 𝐬.  As shown by Koop et al. [1997], it is preferable to use proper 

priors because improper distributions may lead to problems for SFA models.  Because we have 

virtually no information on the location of the parameters in the parameter space, we choose to be 
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as uninformative as possible on the distribution choice.  As in Fernandez et al. [2000], we use 

independent priors: 

𝑝(𝛃, 𝐮, 𝜎, 𝛂, 𝑞, 𝐬) = 𝑝(𝛃)𝑝(𝐮)𝑝(𝜎)𝑝(𝛂)𝑝(𝑞)𝑝(𝐬)                                                                              (24) 

We use this independence assumption to choose parameter distributions that do not impose 

structure, so that no involuntary information is introduced into the inference procedure.  We also 

choose proper non-informative priors for each parameter, as in Fernandez et al. [2000] (i.e. we 

choose the hyper parameters of the priors so that the prior is as uninformative as possible).  The 

specific priors are listed in Appendix B. 

The product of the likelihood (i.e. the density of the observations given by equation (24)) and the 

priors defines the posterior distribution of our Bayesian model.  We cannot obtain a closed form 

solution for the posterior distribution, so a Monte Carlo by Markov Chain (MCMC) is used to 

approximate the posterior distribution and to obtain the empirical distributions of the parameters.  

We partition the posterior distribution for all the model’s parameters and each group of 

parameters is simulated sequentially given the data and the values of the other parameters.  This 

algorithm (Gibbs algorithm) converges to the true distribution of the entire set of parameters.  

The derivation of the posterior distributions and the simulation procedure we have adopted for 

the estimation are presented in Appendix C.   

4. The data 

The data used in this paper come from the POPSY (Arable Crop Production, Environment and 

Regulation) project database (CERFRANCE Alliance Centre).  The individual units are crop 

farms in the Eure-et-Loir département in France, and cover the period 2005-2008.  The data were 

obtained through a voluntary survey of farmers in this region.  Farmers’ participation in the 

survey was voluntary and the data collected are anonymous.  After cleaning for missing and 

inconsistent data, an unbalanced panel of 3,462 arable farms is obtained.  The data set contains 

farm-level information on physical characteristics (outputs and inputs) and economic-financial 

data (revenues from specific products and product groups, expenses related to input use, subsidies 

etc.).  Four inputs (land, labor, capital and materials), one damage control input and three outputs 

characterize the production technology.  Land is measured using the Utilized Agricultural Area 
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(𝑈𝐴𝐴) of each farm in hectares (ha), labor is obtained by aggregating family labor and hired 

workers, and measured in Annual Work Units (𝐴𝑊𝑈).  Materials are the sum of intermediate 

consumption (𝐼𝑛𝑡. 𝐶𝑜𝑛𝑠., which includes operational costs like fertilizers, and seeds) and other 

costs (water, gas, electricity, maintenance and repair work), and are measured in Euros.  

Depreciation (𝐷𝑒𝑝.) approximates the capital stock (equipments ans buildings) of the farms and 

is also measured in Euros.  Finally, the consumption of pesticides (𝑃𝑒𝑠𝑡.) at the farm level 

(variable pesticides) is our damage control input.  

The survey we used contains information on 24 crops, all grown in the département.  This 

information is mostly related to the surface sown.  We do not have the information on the 

production or the value for the specific crops, however.  The information we can directly use is 

the value in Euros of three aggregate outputs: cereal crops, industrial crops and miscellaneous 

crops.  The composition of these aggregated outputs is detailed in Appendix D.  The Bayesian 

methodology we implement allows us to deal with multiple outputs but, unfortunately it does not 

work with farms that have zeros production for one or more outputs.  In our sample, most farms 

(81.02%) have zeros for miscellaneous crops.  Based on this observation, we have decided to 

aggregate industrial and miscellaneous crops together.  Then we have in our sample two 

aggregate outputs: cereals (Cer.) and the industrial-miscellaneous (Ind-Oth) crops.  Finally, we 

have dropped farms with zero values in one of these two aggregate outputs.  Our final database 

contains information on 3,420 arable farms, distributed over the years as follows: 937 farms in 

2005, 916 in 2006, 913 in 2007 and 654 in 2008. 

The variables measured in Euros (materials, depreciation, pesticides and the aggregated outputs) 

have been deflated using adequate price indexes from the French National Institute of Statistics 

and Economic Studies (𝐼𝑁𝑆𝐸𝐸) using 2005 as te base year.  The exact construction of these price 

indexes is presented in Appendix D.  Table 1 contains descriptive statistics of the variables used 

to characterize the technology. 

[INSERT TABLE 1 ABOUT HERE] 
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5. The Results 

The estimation involves simulating the posterior distribution using Gibbs algorithm.  We simulate 

parameters 𝛃, 𝜎, 𝜆 and 𝐮 from known distributions. As explained in Appendix C, the posterior 

distributions of 𝛂, 𝑞 and 𝐬 do not have standard forms so, following Fernandez et al. [2000], we 

simulated them using the Metropolis random walk algorithm.  The components of 𝛂 sum to one 

so we only have to simulate one of the two components of this vector, say 𝛼1, using a 

unidimensional transition density, and the other parameter is naturally deduced as 𝛼2 = 1 − 𝛼1.  

For 𝑞 and the two independent components of the vector 𝐬 we draw values from a unidimensional 

transition density.  The mean of the density is given by the previous value in the chain.  The 

simulated value, called a candidate, enters the algorithm with a given probability.  In Table 2 we 

present the standard errors used to calibrate the algorithm and the corresponding acceptation 

rates.  The parameter acceptance probabilities range from 26% to 48%, which is standard.   

[INSERT TABLE 2 ABOUT HERE] 

The starting values used to initialize the Gibbs algorithm are 0.5 for all components of 𝛃, 0.5 for 

the standard error (𝜎), 10 for 𝜆, 0.5 for both elements of 𝛂, 2 for 𝑞, 1 for both components of 𝐬 

and 𝐮.  For each year we conducted 260,000 simulations.  We have eliminated the first 10,000 

simulations to reduce the dependence of the results on the initial values.  From the 250,000 

remaining simulations, we keep one value per cycle of ten iterations to avoid correlation between 

successive steps.  Thus the results rest on 25,000 simulations. 

To verify that the algorithm has converged, we have performed standard tests.  The plots of the 

simulations did not show any systematic pattern or trend, so the visual check seems to confirm 

convergence.  The Geweke and the Gelman and Rubin convergence tests are performed to get 

formal confirmations of the algorithm convergence.  The Geweke test tests the equality between 

the averages of the first 10% and of the last 50% of the chain.  The results are reported in Table 

3. The test statistic is distributed standard normal so we cannot reject convergence at 95%. 

[INSERT TABLE 3 ABOUT HERE] 

The Gelman and Rubin test allows us to check the global sensitivity of the final output to the 

starting values.  Table 4 gives the starting values we have tried.  These starting values have no 



17 

 

impact on the simulated chains.  In other words, the estimated values do not depend on the initial 

conditions of the algorithm.  Details on the algorithm are provided in Appendix C. 

[INSERT TABLE 4 ABOUT HERE] 

Tables 5 and 6 contain the estimated values of the parameters of our Bayesian model for the years 

2005-2008.  For each estimated mean of the parameters, we present a 95% confidence interval.  

Note that for each parameter of the model it is the 2.5% and 97.5% percentiles of the simulated 

chain that are used as the upper and lower bound of the confidence interval. 

[INSERT TABLE 5 ABOUT HERE] 

[INSERT TABLE 6 ABOUT HERE] 

Table 7 gives an overall view of the technical efficiency scores as calculated using the Bayesian 

model.  As for the estimated parameters, the mean of the simulated efficiency parameters is 

considered as the technical efficiency score of a typical farm. 

[INSERT TABLE 7 ABOUT HERE] 

The technical efficiency scores are fairly stable over the years spanned by our sample with no 

noticeable trend.  There is a small increase in 2007 followed by a small decrease on 2008, but 

nothing that stands out.  Roughly, given the inputs used by the farms, the production of Eure-et-

Loir farms can be increased, on average, by a factor of 20%.  These results are consistent with the 

literature on farm production. 

Now that we have all the estimated parameters of our model, we can turn to the marginal product 

of the pesticides.  The pesticide marginal product on the aggregate production is given by 

Equation (14).  We present the results for the farm at the median marginal productivity.  This 

choice is natural because the median is robust to extreme values, and in addition the median is 

not a virtual unit, it corresponds a real farm in the sample.  We also report, for an illustrative 

purpose the result for the average over all farms.  The results are presented in Table 8. 

[INSERT TABLE 8 ABOUT HERE] 

There are two possible ways to look at the results.  The first one is the standard cost-benefit 

analysis.  The problem that we have here, as we mentioned in the introduction, is that we do not 
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have the social cost to adjust the market price of pesticides to account for their true cost.  

However, the estimated marginal product can be compared to the actual market price of 

pesticides to determine how farmers behave with respect to market signals.  When farmers are 

optimizing and behaving rationally, the value of the marginal product of pesticides must be equal 

or at least close to the price of the pesticides.  Because we have a multi-output production process 

we can look at the value of the marginal product for the aggregate output and for each individual 

output.  A characterization of the farms optimizing behavior would compare pesticide’s marginal 

products to the real price (pesticide price divided by the output price).  The pesticide price is 

obtained from the INSEE website.  The computation of the aggregate output price index uses an 

index of the cereal mix and the industrial other crops for each farm for each year in our sample. 

Then, we use the estimated aggregator to compute the composite index for the median farm.  

(The computational details are presented in the Appendix D.)  The results are reported in Table 9. 

[INSERT TABLE 9 ABOUT HERE] 

Table 10 presents a comparison of the pesticide real price of pesticides to the marginal effect of 

pesticides on the aggregate production for the median farm for each year in our sample.  Recall 

that we have modeled the pesticides as a damage reducing input, so this marginal effect is 

interpreted as the number of aggregate production units protected or not damaged when using one 

more unit of pesticide.  This is not per se a marginal product, because we do not filter out the 

aggregator effect, we will do that next by considering the specific crop effects.  There is one very 

interesting features of pesticides use: as the real price of pesticides decreased, so did the marginal 

product.  In other words, there is some rationality in the use of pesticides; cheaper pesticides are, 

larger the quantity of pesticides used (decreasing marginal effect).  It is difficult to say more on 

this relationship however, because it just relates the aggregated output and the overall marginal 

use of pesticides.  Therefore, we have to look at the relationship between the specific output and 

pesticides.  Nonetheless, we have highlighted that the price signal works and induce a behavior. 

[INSERT TABLE 10 ABOUT HERE] 

Now we address the asymmetric effect of pesticides on the crops, that is we exploit the multi-

output features of our model.  We would like to know how the farm’s choice of crop mix is 

related to pesticide uses.  That is, we would like to know how specific crops relate to pesticide 

use and how it responds to price incentives.  To do this, we combine the definition of the output 
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specific marginal product, Equation (16), with the definition of the aggregator.  The results are 

presented in Table 11.  

The results are clear on one point; the pesticide marginal product for the cereals is larger than it is 

for the other crops.  It also seems that cereal production does not respond perfectly to price 

signals when compared to the response of other crops.  This might mean that pesticide control 

incentives (policies) may have had a larger effect on the cereal production process than on the 

other crops.  In other words, the pesticide use is not neutral with respect to the type of crops and 

the restrictions have been probably more demanding for cereals or it was easier to apply them to 

cereal than to other crops in Eure-et-Loir.  The results also point out that every year, and for both 

outputs, farmers are not using as much pesticides as it would be optimal to do so from a pure 

profit maximizing behavior.3  This “sub-optimal” behavior can probably be attributed to the 

effect of the environmental regulation and practices.  This suggests that the declared policy 

objective to reduce pesticide use may have a direct impact on the farmers in Eure-et-Loir through 

various programs ranging from education on environmental practices to specific restrictions.  

That is, the government might be using other tools than price to induce farmers to use less 

pesticide and this shows up as larger than expected marginal products than those we would 

expect when farms are pure profit maximizers.  In other words, the Authorities’ pesticide 

management has an impact on farmers’ practices as they use less pesticide than they would 

otherwise. 

INSERT TABLE 11 ABOUT HERE] 

At this stage we can look for a characterization of farms’ pesticide use and in particular we can 

explore how it is related to farm size.  The first step is to look at the marginal product as a 

function of the size of the land (UAA).  For each quartile of the size we choose the median of the 

marginal product.  Table 12 presents these results. 

[INSERT TABLE 12 ABOUT HERE] 

                                                        

3 We compare pesticide marginal product of each specific output to real pesticide price (pesticide price divided by 

the specific output price). 
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We observe, for all years, that the bigger the farm is, the larger the pesticide marginal product is. 

This positive relationship between the marginal product of pesticides and the size of the farms is 

observed for both outputs.  The largest farms tend to drift away from a profit maximizing 

quantity of pesticide.  In other words, the large farms seem to be less bound to price incentives.  

So the question is what can explain such a different behavior between small and large farms?  

One possible explanation is an asymmetric impact of the regulation, the impact being more 

strongly felt by large farms than small ones.  This might be due to the fact that large farms have 

an easier access to common agricultural policies (CAP) information and programs than small 

farms, so they are more likely to respond well to policies and adopt low-pesticides production 

techniques.  Large farms better know the available compensation mechanism and have often 

more qualified workers and up-to-date technology that allow them to experiment with new 

production practices. 

Our results suggest that subscription to the Agro-environmental policies (AEP) would be stronger 

for large farms than small ones.  The objective of the AEP is to shift the agricultural production 

processes toward greener by favoring various protocols like setting up grassy-band along rivers, 

banning the use of fertilizers on some natural grasslands, restricting the use of pesticides, inciting 

to shift to organic agricultural production processes, etc.  The involvement of farmers in these 

AEP is voluntary, however.  The compensatory payment depends on the area on which the AEP 

is experimented and are likely to offset the additional cost that come from the change in 

agricultural practice.  The large farms are strongly incited to introduce these types of 

experimentation on a part of their large agricultural area, a luxury that small farms may not have, 

as suggested by our result on the marginal product of pesticide.  In addition, it is a known fact 

that large farms have more qualified workers and the necessary technology to adhere to these 

programs, making it less costly to introduce them than for small units.  Our results are not proof 

that large farms internalize better the “greener” processes, but they definitely suggest an 

asymmetric behavior and large farms respond more to incentives other than pesticide price. 

6. Conclusion 

In this paper we have estimated the pesticide marginal product of Eure-et-Loir farms during the 

period 2005-2008.  The treatment of pesticides in production model is as close to the reality as it 
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is possible in this particular case.  We have taken into account the multi-output nature of farm 

production.  This can clearly impact on the use of pesticides on crops because there is no reason 

to believe that farmers will be neutral with respect to what they grow when they use of pesticides. 

An appropriate model of the pesticides in the production process is crucial in order to capture the 

real effect of this input.  We have modelled pesticides as a damage reducing input à la Carpentier 

and Weaver [1997] to capture the specific effect of the pesticide on each standard input.  In fact, 

we have made the distinction between standard inputs and effective inputs and we have 

associated to each standard input a specific damage reducing function.  One of the features of our 

model is that overdosage is possible as the function is nonlinear in the pesticides.  We have 

adapted this framework to a translog production function and identified all the parameters.  The 

estimation of such a model (multi-output - effective input) is rarely used in practice because of 

the complexity of the estimation process.  We have implemented Fernandez et al. [2000] 

Bayesian estimation procedure for stochastic frontiers to obtain estimates of all the parameters. 

Our results show that the marginal product of pesticides is systematically larger than the cost of 

using them in Eure-et-Loir and we attribute this effect to the pesticide control policy.  We have 

also identified that cereals are probably more flexible than the other crop when pesticide 

management comes around as we have identified that the pesticide marginal product for these 

crops tend to be larger than they are for the other crops.  It also seems that large farms adopt a 

more environmental friendly behavior than small units. 
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Appendices 

A. The aggregate output and the likelihood. 

In this appendix we give the details on how the specific output effects are related to the aggregate 

output to include them in the likelihood.  Instead of dealing directly with the individual outputs, 

we can as well deal with their respective weights in the aggregate, this will convey just about the 

same information for our needs.  The individual contribution of farm 𝑑 to output 𝑗 is given by the 

output elasticity defined as: 

𝜂𝑑,𝑗 =
𝜕ln(𝐴(𝐲𝑑))

𝜕ln(𝑦𝑑,𝑗)
=

𝛼𝑗
𝑞𝑦𝑑,𝑗

𝑞

∑ 𝛼𝑙
𝑞𝑛

𝑙=1 𝑦𝑑,𝑙
𝑞  with 𝑗 = 1, . . . , 𝑛 and 𝑑 = 1, . . . , 𝐷.                                        (𝐴1) 

We group all these elasticities into a vector, 𝛈𝑑 = (𝜂𝑑,1, 𝜂𝑑,2, . . . , 𝜂𝑑,𝑛)⊤.  Since these weights 

sum up to one, the (𝑛 − 1) weights are sufficient to complete the construction of the likelihood 

for the 𝑛 observed outputs.  In fact, given 𝛂 = (𝛼1, . . . , 𝛼𝑛)⊤ and 𝑞, there exists a correspondence 

between the observed output vector 𝐲𝑑 ∈ ℝ+
𝑛  (𝐲𝑑 = (𝑦𝑑,1, . . . , 𝑦𝑑,𝑛)⊤), and the 𝑛 −vector 

(𝛿𝑑, 𝜂𝑑,2, . . . , 𝜂𝑑,𝑛)⊤.  We need the distribution of the shares and then to establish the relationship 

between these variables and the distribution of the individual outputs, 𝑦𝑑,𝑗 for 𝑗 = 1, . . . , 𝑛.  That 

is, given the density of the shares and the aggregate, 𝑓(𝛿𝑑), the density of the outputs is given by: 

 𝑓 (𝑦𝑑,1, 𝑦𝑑,2, . . . , 𝑦𝑑,𝑛) = 𝑓(𝛿𝑑 , 𝜂𝑑,2, . . . , 𝜂𝑑,𝑛) ⋅ |𝐉| ,                                                                            (𝐴2) 

where |𝐉| is the absolute value of the Jacobian of the transformation from (𝛿𝑑, 𝜂𝑑,2, . . . , 𝜂𝑑,𝑛) to 

(𝑦𝑑,1, 𝑦𝑑,2, . . . , 𝑦𝑑,𝑛).  Using the definition of 𝛿𝑑(𝐱𝒅, 𝑧𝒅) and 𝛈𝑑 the Jacobian is given by: 

𝐉 = 𝐉𝐧−𝟏 = 𝑞𝑛−1 ×
𝜂𝑑,1

𝑦𝑑,1
×

𝜂𝑑,2

𝑦𝑑,2
×

𝜂𝑑,3

𝑦𝑑,3
×. . . .×

𝜂𝑑,𝑛

𝑦𝑑,𝑛

= 𝑞𝑛−1 ∏
𝜂𝑑,𝑗

𝑦𝑑,𝑗

𝑛

𝑗=1

 .                                                                                                             (𝐴3) 

Since 0 ≤ 𝜂𝑑,𝑗 ≤ 1 and ∑ 𝜂𝑑,𝑗
𝑛
𝑗=1 = 1, the Dirichlet distribution is the ideal choice.  That is, we 

assume that all shares are jointly Dirichlet distributed: 

𝑝( 𝛈𝑑 ∣∣ 𝑠 ) = 𝑓𝐷𝑖𝑟.
𝑛−1( 𝛈𝑑 ∣∣ 𝐬 ),                                                                                                                   (A4) 
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where 𝑓𝐷𝑖𝑟.
𝑛−1(𝛈𝑑 ∣ 𝐬) denotes a Dirichlet probability density function of dimension (𝑛 − 1) with 

unknown parameters 𝐬 = (𝑠1, . . . , 𝑠𝑛)⊤ ∈ ℝ+
𝑛  to be estimated.  Note that 𝑓(𝛈𝑑 ∣ 𝛿𝑑) is nothing but 

the density of 𝛈𝑑 given 𝛂 and 𝑞, i.e. 𝑓(𝛈𝑑).  Then we have (𝛈𝑑 ∣ 𝛿𝑑) = 𝑓(𝛈𝑑) = 𝑓𝐷𝑖𝑟.
𝑛−1(𝛈𝑑 ∣ 𝐬), 

so that for observation 𝑑, the density (or likelihood) is given by: 

𝑝(𝐲𝑑) = 𝑓𝑁(𝐕𝑑𝛃𝑑 − 𝑢𝑑 , 𝜎2) × 𝑓𝐷𝑖𝑟.
𝑛−1( 𝛈𝑑 ∣∣ 𝐬 )  × 𝑞𝑛−1 ∏

𝜂𝑑,𝑗

𝑦𝑑,𝑗

𝑛

𝑗=1

.                                                     (A5) 

The likelihood in equation (23) is obtained by multiplying all individual distribution under the 

assumption that all farms are identically and independently distributed.  

B. The priors 

The prior distribution of the frontier parameters is assumed to be a 𝑘 − dimension normal 

distribution, with mean 𝐛0 and covariance matrix 𝐇0
−1: 

𝑝(𝛃) = 𝑓𝑁
𝑘( 𝛃 ∣∣ 𝐛0, 𝐇0

−1 ) × 1ℑ(𝛃),                                                                                                        (𝐴6) 

where 1(⋅) is an indicator function that allows us to restrict the parameter space to a subset of 

ℑ ⊆ ℝ𝑘.  For a non-informative prior, we choose 𝐛0 = 0𝑘 and 𝐇0 = 10−4 × 𝐼𝑘.  These 

parameters produce a virtually flat surface centered on zero.  For convenience, let ℎ = 𝜎−2 and 

let the prior for ℎ be Gamma.  That is: 

𝑝(ℎ) = 𝑓𝐺( ℎ ∣∣ 𝑛0, 𝑎0 ).                                                                                                                           (𝐴7) 

In order to obtain a non-informative prior, we set 𝑛0 = 1 (this returns an exponential distribution) 

and 𝑎0 = 10−6.  The posterior is again virtually flat over [0, +∞[ and is never larger than 10−6.  

These two hyper parameters ensure that the posterior distribution is almost not affected by the 

choice of the distribution and as a consequence the data will guide the results. 

Now, since all 𝛼𝑗 are in the unit interval and add up to one, a Dirichlet distribution appears to be 

the natural choice for the prior.  Thus, we assume that 𝛂 follows such a distribution with 

parameter vector 𝐚.  That is: 

𝑝(𝛂) = 𝑓𝐷𝑖𝑟.
𝑛−1( 𝛂 ∣ 𝐚 ) ,                                                                                                                               (𝐴8) 
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where the hyper parameters are all positive, 𝐚 = (𝑎1, 𝑎2, . . . . . , 𝑎𝑛)⊤ ∈ ℝ+
𝑛 .  Now, to get a non-

informative prior, we impose that 𝑎𝑗 = 1 for all j, to obtain a uniform distribution on a unit cube 

of dimension 𝑛. 

Now, for the elasticity of substitution of the aggregator function, we need the parameter to be 

larger than one for consistency. Thus, to obtain 𝑞 > 1 we assume that it is exponentially 

distributed on ]0,1[. That is: 

𝑝(𝑞) ∝ 𝑓𝐺( 𝑞 ∣∣ 1, 𝜅 ) × 1(1,∞)(𝑞).                                                                                                            (𝐴9) 

To make this prior as uninformative as possible, we set 𝜅 = 10−6.  We assume that all individual 

components of the vector 𝐬 are independent and Gamma distributed. Therefore, the prior is given 

by: 

                   𝑝(𝐬) = ∏ 𝑝

𝑛

𝑗=1

(𝑠𝑗)  = ∏
(𝑐𝑗)𝑏𝑗

𝛤(𝑏𝑗)

𝑛

𝑗=1

× 𝑠
𝑗

𝑏𝑗−1
× exp{−𝑐𝑗 × 𝑠𝑗}.                                         (𝐴10) 

To make this prior non informative, we set 𝑏𝑗 = 1 and 𝑐𝑗 = 10−6 for all 𝑗 = 1, . . . , 𝑛.  Finally, we 

need to address the distribution of the efficiency component.  We assume that the efficiency 

terms are all identically and independently exponentially distributed.4  That is: 

𝑝( 𝐮 ∣ 𝜆 ) = ∏ 𝑓𝐺

𝐷

𝑑=1

( 𝑢𝑑 ∣∣ 1, 𝜆 ) = 𝜆𝐷exp{−𝜆 × 𝐮⊤𝜄𝐷}.                                                                   (𝐴11) 

To model 𝜆 we set a prior on the prior’s parameter. Koop et al. [1997] recommend using a 

Gamma distribution for SFA estimation: 

𝑝(𝜆) = 𝑓𝐺(𝜆 ∣ 𝜆1, 𝜆2)) = −ln(𝜏∗)exp{−𝜆 × − log(𝜏∗)} .                                                              (𝐴12) 

To have a non-informative prior we set 𝜆1 = 1 and 𝜆2 = −ln(𝜏∗) where 𝜏∗ is roughly an average 

of the efficiency score.  By setting 𝜆1 = 1 we get an exponential prior.  Since 𝜏∗ is not observed 

ex ante, we set 𝜏∗ = 0.875. 

                                                        

4 Note that any distribution that generates an efficiency score in the unit interval will do the trick.  Truncated normal 

or half normal distributions are alternate options one may consider. 
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C. The posterior distributions 

It is important to remember that Bayesian inference rests on the fact that the smaller problems are 

always adjusted so that the inference is consistent.  In other words, when we focus on a group of 

parameters, everything that is not related to this variable is included in a multiplicative constant 

(adequately chosen) so that the problem is consistent.  That is, we can always adjust the constants 

in an arbitrary fashion, as long as in the end the prior is a well-defined density (it integrates to 

one). 

The posterior distribution for 𝛃 is obtained by multiplying the prior (Equation (A7)) by the 

likelihood function (Equation (23)).  After some manipulations, we obtain the following 

distribution for 𝛃. 

𝑝(𝛃 ∣ 𝐘, 𝛃, 𝐮, ℎ, 𝛂, 𝑞, 𝐬) ∝ (2𝜋)−
𝑘
2 × (det[[ℎ−1(𝐕⊤𝐕)−1]−1 + 𝐇0])

1
2 ×                                                             

        exp {−
1

2
(𝛃 − ([ℎ−1((𝐕⊤𝐕))

−1
]

−1
𝑏 + 𝐇0𝐛0) ([ℎ−1((𝐕⊤𝐕))

−1
]

−1
+

𝐇0)
−1

)

⊤

([ℎ−1((𝐕⊤𝐕))
−1

]
−1

+ 𝐇0) ×                                (𝛃 − ([ℎ−1((𝐕⊤𝐕))
−1

]
−1

𝐛 +

𝐇0𝐛0) ([ℎ−1((𝐕⊤𝐕))
−1

]
−1

+ 𝐇0)
−1

)} ,                (𝐴13)  

which is a 𝑘 −dimensional normal distribution with 𝑏∗ and covariance matrix 𝐻∗.  That is: 

𝑏∗ = ([ℎ−1(𝐕⊤𝐕)−1]−1 + 𝐇0)−1([ℎ−1(𝐕⊤𝐕)−1]−1𝐛 + 𝐇0𝐛0)                                                                 

= ([ℎ−1(𝐕⊤𝐕)−1]−1 + 𝐇0)−1(ℎ𝐕⊤𝛿′ + 𝐇0𝐛0) ,                                                                      (𝐴14) 

and 

 𝐻∗ = ([ℎ−1(𝐕⊤𝐕)−1]−1 + 𝐇0)−1,                                                                                                          (𝐴15) 

where 𝐛 = (𝐕⊤𝐕)−𝟏𝐕𝐓𝐥𝐧𝐀(𝐘)′ with 𝐥𝐧𝐀(𝐘)′ = 𝐥𝐧𝐀(𝐘) + 𝐮. 𝐛0 and 𝐇0 are the hyperparameters 

set above. 

The posterior distribution of the variance, 𝜎2, is given by the product of the prior (Equation (A7)) 

by the likelihood (Equation (24)).  Recalling that ℎ = 𝜎−2, we have: 

𝑝(ℎ) =
(𝑎0)𝑛0

𝛤(𝑛0)
× ℎ𝑛0−1 × exp{−𝑎0 × ℎ} ,                                                                                         (𝐴16) 
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and 

𝑝(𝐲 ∣ 𝛃, 𝐮, ℎ, 𝛂, 𝑞, 𝐬)

= (2𝜋)−
𝐷
2 (ℎ)

𝐷
2 exp {−

ℎ

2
(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮)⊤(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮)} × 𝑇1 .          (𝐴17) 

where 𝑇1 represents all the terms of the density that do not depend on ℎ.  After some 

manipulations we get the following posterior distribution: 

𝑝( ℎ ∣∣ 𝐘, 𝛃, 𝐮, 𝛂, 𝑞, 𝐬 ) ∝

(𝑎0 +
1
2

(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮)⊤(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮))

𝑛0+
𝐷
2

𝛤 (𝑛0 +
𝐷
2

)
                            

                             × ℎ𝑛0+
𝐷
2

−1

× exp {−ℎ (𝑎0 +
1

2
(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮)⊤(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮))}                             (𝐴18) 

This distribution is of the Gamma distribution form, so we write it as: 

 𝑝( ℎ ∣∣ 𝐘, 𝛃, 𝐮, 𝛂, 𝑞, 𝐬 ) ∝ 𝑓𝐺 (𝑛0 +
𝐷

2
, 𝑎0 +

1

2
(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮)⊤(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮)) .       (𝐴19) 

We can deduce the posterior distribution of the weights of the CES aggregator by proceeding as 

above.  Multiplying the Dirichlet prior distribution by the likelihood and after some 

manipulations, we get: 

𝑝( 𝛂 ∣∣ 𝐘, 𝛃, 𝐮, ℎ, 𝑞, 𝐬 ) = 𝑝( 𝐘 ∣∣ 𝛃, 𝐮, ℎ, 𝛂, 𝑞, 𝐬 ) × 𝑝(𝛂) 

                                       = 𝐶𝑠𝑡 × exp {−
ℎ

2
(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮)⊤(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮)} × 

                                               ∏ (
𝛤(∑ 𝑠𝑗𝑗 )

∏  𝑗 𝛤(𝑠𝑗)
)

𝐷

𝑑=1

× ∏ ∏ 𝜂
𝑑,𝑗

𝑠𝑗

𝑛

𝑗=1

𝐷

𝑑=1

×
𝛤(∑ 𝑎𝑗𝑗 )

∏  𝑗 𝛤(𝑎𝑗)
× ∏  

𝑝

𝑗=1

𝛼
𝑗

𝑎𝑗−1
          (𝐴20)  

where 𝐶𝑠𝑡 represents all the terms of the density that do not depend on 𝛂.  Thus, we have the 

following posterior distribution for 𝛂: 

𝑝( 𝛂 ∣∣ 𝐘, 𝛃, 𝐮, ℎ, 𝑞, 𝐬 ) ∝ ∏  

𝑛

𝑗=1

α
𝑗

𝑎𝑗+𝑠𝑗𝑞𝐷−1
× ∏ ∏ (∑ α𝑗

𝑞

𝑛

𝑗

𝑦𝑑,𝑗
𝑞 )

− ∑ 𝑠𝑗
𝑛
𝑗𝑛

𝑗=1

𝐼

𝑑=1

 

                                                      × exp {−
1

2𝜎2
(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮)⊤(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮)} .          (𝐴21) 
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Note that all the terms containing 𝐥𝐧𝐀 are preserved because they all depend on the parameter 

vector 𝛂.  This is not a known distribution and the simulation method would require some 

adjustments.  This is explained below.  For the elasticity of substitution parameter of the CES 

aggregator, 𝑞, we proceed as before.  Using the likelihood and 𝑞’s prior, the posterior distribution 

is given by: 

𝑝( 𝑞 ∣∣ 𝐘, 𝛃, 𝐮, ℎ, 𝛂, 𝐬 ) = (2𝜋)−
𝐷

2 (ℎ)
𝐷

2 × exp {−
1

2𝜎2
( 𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮)⊤(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮)} ×

∏ (
𝛤(∑ 𝑠𝑗𝑗 )

∏  𝑗 𝛤(𝑠𝑗)
)𝐷

𝑑=1 ×  𝑞𝐷(𝑛−1) ∏ ∏
𝜂

𝑑,𝑗

𝑠𝑗

𝑦𝑑,𝑗

𝑝
𝑗=1

𝐷
𝑑=1 ×

𝜅

𝛤(1)
× exp{−𝜅 × 𝑞} × 1(1,∞)(𝑞).                        (𝐴22)  

Rearranging terms, we find that the posterior distribution of 𝑞 is proportional to: 

𝑝( 𝑞 ∣∣ 𝐘, 𝛃, 𝐮, ℎ, 𝛂, 𝐬 ) ∝ 1(1,∞)(𝑞) × 𝑞𝐷(𝑛−1) × exp{−𝜅 × 𝑞} × 

         exp {−
1

2𝜎2
(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮)⊤(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮) − ∑ 𝑠𝑗𝑑,𝑗 × ln (

∑ 𝛼𝑗
𝑞𝑛

𝑗 𝑦𝑑,𝑗
𝑞

𝛼
𝑗
𝑞

𝑦
𝑑,𝑗
𝑞 )} .             (𝐴23)  

As above, we keep all the terms involving 𝐥𝐧𝐀 and again, the posterior distribution is not a 

known form we can simulate directly. 

We also need the parameter vector of the Dirichlet distribution for 𝛈, i.e. 𝐬. We have assumed 

that all the components of the vector are independently Gamma distributed and again after some 

manipulation on the posterior we get: 

𝑝( 𝑠𝑗 ∣∣ 𝐘, 𝛃, 𝐮, ℎ, 𝛂, 𝑞, 𝑠−𝑗 ) = 𝑓𝑁
𝐷(𝐕𝛃 − 𝐮, 𝜎2𝐼𝐷) × ∏ (

𝛤(∑ 𝑠𝑗𝑗 )

∏  𝑗 𝛤(𝑠𝑗)
)

𝐷

𝑑=1

× 𝑞𝐷(𝑛−1) × 

∏ ∏
𝜂

𝑑,𝑗

𝑠𝑗

𝑦𝑑,𝑗

𝑛

𝑗=1

𝐷

𝑑=1

×
(𝑐𝑗)𝑏𝑗

𝛤(𝑏𝑗)
× 𝑠

𝑗

𝑏𝑗−1
× exp{−𝑐𝑗 × 𝑠𝑗},                              (𝐴24) 

where 𝑠−𝑗 is vector 𝐬 without the 𝑗𝑡ℎ component.  Rearranging terms, gives the following 

posterior distribution: 

𝑝( 𝑠𝑗 ∣∣ 𝐘, 𝛃, 𝐮, ℎ, 𝛂, 𝑞, 𝑠−𝑗 )

=
𝛤(∑ 𝑠𝑗𝑗 )

𝐷

𝛤(𝑠𝑗)
𝐷 × 𝑠𝑗

𝑏𝑗−1 × exp [−𝑠𝑗 (𝑐𝑗 + ∑ 𝑙

𝑖

𝑜𝑔 (
∑ 𝛼𝑗

𝑞𝑛
𝑗 𝑦𝑑,𝑗

𝑞

𝛼𝑗
𝑞𝑦𝑑,𝑗

𝑞 ))] .                    (𝐴25) 
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The posterior distribution of the parameter 𝜆 is given by the multiplication of its prior with the 

density distribution of the efficiency term (𝑢𝑑).  Consequently, the posterior distribution is given 

by: 

         𝑝( 𝜆 ∣ 𝐮 ) = 𝑝( 𝐮 ∣ 𝜆 ) × 𝑝(𝜆)

= 𝜆𝐷exp{−𝜆 × 𝐮⊤𝜄𝐷} × −ln(𝜏∗)exp{−𝜆 × − ln(𝜏∗)}.           (𝐴26) 

Rearranging terms gives: 

𝑝( 𝜆 ∣∣ 𝐘, 𝛃, 𝐮, ℎ, 𝛂, 𝑞, 𝐬 )

∝
(𝐮⊤𝜄𝐷 − ln (𝜏∗))𝐷+1

𝛤(𝐷 + 1)
× 𝜆𝐷 × exp{−𝜆(𝐮⊤𝜄𝐷 − ln(𝜏∗))}.                     (𝐴27) 

This is a Gamma distribution with parameters 𝑎∗ = 𝐷 + 1 and 𝑏∗ = 𝐮⊤𝜄𝐷 − ln(𝜏∗).  That is: 

𝑝( 𝜆 ∣∣ 𝐘, 𝛃, 𝐮, ℎ, 𝛂, 𝑞, 𝐬 ) ∝ 𝑓𝐺(𝐷 + 1, 𝐮⊤𝜄𝐷 − ln(𝜏∗)) .                                                                    (𝐴28) 

The last posterior distribution is for the efficiency term, 𝐮.  This is again obtained by multiplying 

its prior with the likelihood. 

𝑝( 𝐮 ∣∣ 𝐘, 𝛃, 𝜆, ℎ, 𝛂, 𝑞, 𝐬 )

= 𝑝( 𝐲 ∣∣ 𝛃, 𝐮, ℎ, 𝛂, 𝑞, 𝐬 ) × 𝑝( 𝐮 ∣ 𝜆 )                                                                                      

   

= (2𝜋)−
𝐷
2 (ℎ)

𝐷
2 exp {−

1

2𝜎2
(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮)⊤(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮)} × 𝜆𝐷exp{−𝜆 × 𝐮⊤𝜄𝐷}

× 𝑇1 .   (𝐴29)  

So that: 

𝑝( 𝐮 ∣∣ 𝐘, 𝛃, 𝜆, ℎ, 𝛂, 𝑞, 𝐬 ) = (2𝜋)−
𝐷
2 (ℎ)

𝐷
2 × 𝜆𝐷 

× exp {−
1

2𝜎2
(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮)⊤(𝐥𝐧𝐀(𝐘) − 𝐕𝛃 + 𝐮) − 𝜆 × 𝐮⊤𝜄𝐷} × 𝑇1.                 (𝐴30) 

Multiplying by a properly chosen constant that does not depend on 𝐮, and we conclude that the 

posterior distribution is normal with mean 𝑇0 = 𝐕𝛃 − 𝐥𝐧𝐀 − 𝜆𝜄𝐷ℎ−1 and variance 𝑃0 = ℎ−1𝐼𝐷.  

That is: 
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𝑝( 𝐮 ∣∣ 𝐘, 𝛃, 𝜆, ℎ, 𝛂, 𝑞, 𝐬 )

∝ 𝑓𝑁
𝐷( 𝐮 ∣∣ 𝐕𝛃 − 𝐥𝐧𝐀(𝐘) − 𝜆 × ℎ−1 × 𝜄𝐷 , ℎ−1 × 𝐼𝐷 ).                                 (𝐴31) 

All these posterior distribution will be sequentially simulated using Gibbs algorithm.  The 

posterior distributions of 𝛃, ℎ, 𝜆 and 𝐮 have well known forms and can be easily simulated.  So 

for each iteration of the algorithm we simulate a 𝑘 −vector of parameters 𝛃 from a normal 

distribution with the hyper-paramaters set as above, then ℎ and 𝜆 are obtained from 

unidimensional Gamma distributions and 𝐮 is obtained from a normal distribution.  It is not as 

easy for the posterior distributions of 𝛂, 𝐬 and 𝑞, as the distributions do not have standard forms.  

There exists, however, multiple methods to simulate a non-standard distribution.  As suggested 

by Fernandez et al. [2000], we use the Metropolis random walk algorithm.  This algorithm allows 

us to simulate a candidate value from an arbitrary distribution (transition distribution) and to 

include this candidate value into the iterative process with a positive probability.  If the value is 

rejected, we keep the current value in the iterative process.  The proportion of generated 

candidate accepted in the Metropolis random walk algorithm can increase (decrease) by reducing 

(increasing) the weights given to the variance-covariance of the transition distribution.  Roberts et 

al. [1997] have shown that when the transition density and the posterior density are normal, the 

optimal acceptation rate is approximately between 0.25 and 0.45 (this is the rate that minimizes 

the auto-correlation between the generated values).  In spite of the fact that we are using normal 

transition density, the posterior is not normal, so we are not in the framework described above.  

However, we keep in mind these figures, which corresponds to the standard practices for SFA 

estimation (O’Donnell [2012] have used a range between 0.2 and 0.6, while Fernandez et al. 

[2000] use an acceptance rate between 0.18 and 0.545).  With the normal transition and the 

random walk Metropolis algorithm, the mean of the normal transition density is given by the 

value of the simulation at the preceding step and the variance allows us to control for the 

convergence speed of the algorithm. We calibrate this parameter such that the acceptation 

probability is reasonable. 

D. Deflation of nominal outputs 

Because we use data for various years, we have to deflate the production to get comparable 

quantities over time.  Our methodology to deflate these aggregate outputs makes use of the UAA 
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and crop price indexes.  We compute a composite deflator for each of our two aggregate outputs.  

The procedure to construct the price deflators is explained in this Appendix. 

Cereal crops price index 

The variable “cereal” crops is an aggregate of wheat, durum wheat, spring barley, winter barley, 

irrigated corn, corn, oat, spring wheat and other cereals.  The French National Institute of 

Statistics and Economic Studies (INSEE) offers a perfect match for the price of wheat, durum 

wheat, spring barley, corn and oat.  However, for winter barley, irrigated corn, durum wheat and 

other cereals, we do not have this perfect match.  So we use instead the price index of spring 

barley, the price index of corn, the price index of wheat and the price index of cereal, 

respectively.  This is justified by the fact that these cereal varieties are relatively close. 

A composite index is constructed using these indexes using the following formula: 

𝐼𝑐𝑒𝑟. = ∑ 𝑤𝑖

𝑛𝑐

𝑖=1

𝑝𝑖,                                                                                                                                       (𝐴32) 

where 𝑤𝑖 = 𝑈𝐴𝐴𝑖/𝑈𝐴𝐴𝑐𝑒𝑟., 𝑝𝑖 is the price index of cereal crop 𝑖, 𝑈𝐴𝐴𝑖 is the Utilized 

Agricultural Area of cereal crop 𝑖 and 𝑈𝐴𝐴𝐶𝑒𝑟. is the Utilized Agricultural Area for all cereal 

crops.  When 𝑈𝐴𝐴𝑐𝑒𝑟. is zero, the variable “cereal” crops is also zero so no composite index is 

calculated in that case.  Finally as mentioned above, there are nine cereals, so 𝑛𝑐 = 9.  This 

composite index is the deflator of the variable “cereal” crops.  The index values are reported in 

Table D1. 

[INSERT TABLE D1] ABOUT HERE] 

Industrial-other crops price index 

The variable “industrial-other” crops is made of protein pea, beet, potato, rape, sunflower, flax, 

poppy, lucerne, other industrial crops, fodder, fruits, vegetables, and horticulture.  The French 

National Institute of Statistics and Economic Studies (𝐼𝑁𝑆𝐸𝐸) publishes the price indexes for 

protein pea, beet, potato, rape, sunflower, poppy, flax, lucerne, fodder, fruits, vegetables, and 

horticulture.  We do not have a price index for “other industrial crops”.  However, the 

contribution if this output is very small (the share of the UAA for these produces represents 
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1.2349% of the UAA).  Consequently, we have simply decided to ignore it in the computation of 

the new other crops price index.  To compute the composite index we use the formula for the 

composite index of cereal crops.  This composite index is the deflator of the variable “New other” 

crops.  The index values are reported in Table D2. 

[INSERT TABLE D2 ABOUT HERE] 

Inputs deflators 

The construction of the input deflators goes as follows.  The variable “intermediate consumption” 

is deflated using its corresponding price index, obtained from French National Institute of 

Statistics and Economic Studies (INSEE).  This price index captures the price of purchasing 

“intermediate consumption” (e.g., energy, seeds, fertilizers).  The variable “depreciation” is 

deflated using the price index of fixe capital consumption (harvesting equipment, tractors, farm 

buildings, etc.).  This index is also from the French National Institute of Statistics and Economic 

Studies (INSEE).  The variable “Pesticide” is deflated by the price index of crop protection 

products.  These indexes are reported in Table D3. 

[INSERT TABLE D3 ABOUT HERE] 
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Tables et Figures 

Table 1. Descriptive statistics 

  Land Land Dep. Int. Cons. Pest. Cereal Ind-Oth 

 Min. 0.5000 14.790 526.10 11,668.00 2,814.00 5,366.00 18.00 

 Qu. 1 1.0000 87.970 13,670.68 32063.00 15,041.00 44,565.00 18,750.00 

 Qu. 2 1.0000 118.450 22,370.48 44,122.00 20,629.00 60,960.00 29,532.00 

2005 Mean 1.2450 125.483 24,954.99 50,639.62 22,383.00 65,641.33 41,608.44 

 Qu. 3 1.3000 154.500 34,266.06 63,075.00 28,502.00 81,700.00 52,020.00 

 Max. 4.0000 360.850 72,973.89 196,536.00 63,085.00 209,897.00 251,397.00 

 Std. 0.4739 50.576 15,092.38 26,125.01 10,028.87 29,478.91 35,355.95 

         

 Min. 0.5000 14.790 885.74 12,489.29 0.00 4,060.27 103.00 

 Qu. 1 1.0000 90.642 13,291.01 31,577.33 14,408.68 45,480.44 14,608.66 

 Qu. 2 1.0000 119.900 22,699.21 44,298.63 19,479.04 63,540.30 24,946.98 

2006 Mean 1.2396 127.344 24,819.94 50,371.32 21,244.82 68,632.46 36,682.38 

 Qu. 3 1.2500 155.232 34,123.04 62,274.31 26,846.05 84,935.78 46,278.67 

 Max. 4.0000 368.210 70,041.01 179,648.83 59,423.15 198,126.91 242,566.68 

 Std. 0.4618 51.168 15,009.07 25,923.88 9,489.41 31,779.86 33,843.50 

         

 Min. 0.4600 14.790 662.26 11,874.08 0.00 4,461.36 419.00 

 Qu. 1 1.0000 92.000 13,370.75 30,605.69 15,063.87 4,7744.39 16,227.83 

 Qu. 2 1.0000 121.060 22,136.79 43,129.59 20,478.04 66,627.23 27,188.18 

2007 Mean 1.2400 128.992 25,440.80 49,226.16 22,263.16 71,918.23 38,243.30 

 Qu. 3 1.2000 158.130 35,482.07 59,863.05 28,093.81 91,000.72 47,161.33 

 Max. 4.0000 393.970 74,123.58 296,767.46 66,040.91 201,235.75 24,0025.77 

 Std. 0.4687 52.331 15,888.37 27,215.24 10,216.34 33,059.07 34,956.50 

         

 Min. 0.4600 32.390 723.30 11,337.13 0.00 5,917.96 486.00 

 Qu. 1 1.0000 91.060 13,178.38 33,754.68 16,226.57 42,550.27 14,924.64 

 Qu. 2 1.0000 120.735 21,738.87 45,966.61 22,028.01 58,318.01 25,644.21 

2008 Mean 1.2031 127.609 24,416.24 50,793.82 24,065.18 64,021.56 34,945.46 

 Qu. 3 1.0000 154.630 33,764.45 63,105.65 30,938.88 78,934.40 42,328.27 

 Max. 3.0000 310.940 72,142.34 176,463.35 74,014.49 195,079.40 256,219.81 

 Std. 0.4306 50.667 15,161.80 24,239.40 10,766.08 31,502.07 32,203.45 
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Table 2. Acceptation rates and standard errors of 𝜶, q, s1 and s2 

  2005 2006 2007 2008 

 𝛂 0.4076 0.3807 0.3335 0.4896 

Acceptation rate q 0.3673 0.2646 0.311 0.3475 

 s1 0.4022 0.355 0.3404 0.4171 

 s2 0.3625 0.3791 0.4369 0.3574 

      

 𝛂 0.015 0.015 0.015 0.015 

Standard errors q 0.02 0.03 0.02 0.01 

 s1 0.23 0.23 0.23 0.23 

 s2 0.25 0.25 0.25 0.25 

 

Table 3. Results of the Geweke convergence test 

  2005 2006 2007 2008 

 

-0.5563 0.3856 -0.6454 0.5475 

γ1 1.0061 -0.4768 1.2216 -1.1592 

γ2 -0.4479 -1.2425 0.0832 -0.4789 

γ3 0.839 0.3184 0.9319 -1.4309 

γ4 0.3852 -0.4518 0.1507 1.656 

π11 0.2563 -0.0458 -0.6061 0.4902 

π22 0.1631 -0.0121 -0.554 -1.0877 

π33 0.244 0.3094 -0.005 -0.5902 

π44 1.5578 -0.905 0.8227 0.5372 

π12 -0.4236 0.8631 0.1215 1.4595 

π13 0.2465 0.1689 0.131 0.1894 

π14 1.5995 -1.9468 0.0991 -1.4513 

π23 1.2804 -1.4962 1.0883 -0.9943 

π24 -0.5241 0.8887 -1.7479 0.2418 

π34 0.6457 0.9996 1.6786 -0.6471 

η1 -0.3895 -0.5278 0.1148 -0.5499 

η2 1.3925 -0,9752 -1,734 -1.2237 

η3 0.2018 0.4697 1.498 -0,5729 

η4 1.2577 -0.613 1.7677 0.2944 

δ1 -1.1871 0.3227 -1.0546 0.6324 

δ2 0.035 1.5574 0.2585 -1.3663 

δ3 1.0013 0.6697 -0.0245 0.6931 

δ4 -0.7162 -1.2191 1.2018 -0.1732 

ϕ1 -0.7115 -0.1171 -1.3683 1.1557 
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ϕ2 1.0997 0.1674 1.52 -0.9042 

ϕ3 0.2135 -0.527 -0.6236 -0.6182 

ϕ4 -1.1645 -0.1367 -0.767 1.4969 

     σ 0.1765 -0.1486 0.5716 -0.2513 

λ 0.8812 -0.4743 0.1357 -1.2917 

     q 0.5567 -0.7922 -1.6529 0.6878 

α1 1.6171 0.0745 -0.5768 0.0811 

α2 -0.5389 -0.0745 0.5768 -0.0811 

s1 -0.4665 0.3339 -0.5929 0.1475 

s2 0.4766 0.0945 0.5483 -0.0211 

The test statistic follows a standard normal distribution.  There is evidence of convergence (at 95%) 

when the calculated statistics belongs to [-1,96, 1,96]. 

 

Table 4. Parameter starting values 

 Starting values 1 Starting values 2 Starting values 3 

𝛽 0.5 for all elements 1 for all elements 1.5 for all elements 

𝜎 0.5 0.8 0.7 

𝜆 10 15 20 

u 1 for all elements 0.8 for all elements 0.7 for all elements 

𝛂 0.5 for all elements 0.33 et 0.66 0.75 et 0.25 

q 2 3 4 

s 1 for all elements 2 for all elements 2.5 for all elements 

 

Table 5. Parameter estimated values (2005-2006) 

    2005     2006   

 

Mean Quart. 2.5 Quart. 97.5 Mean Quart. 2.5 Quart. 97.5 

cte 10.37252 10.20557 10.53984404 10.16896 9.999989 10.33327442 

γ1 0.4980405 0.3078862 0.671712843 0.4740331 0.2266007 0.702916712 

γ2 0.008149418 -0.01120299 0.027804788 0.00750652 -0.01677335 0.031888318 

γ3 -0.001092679 -0.01039244 0.00819192 0.002176794 -0.009499816 0.014101083 

γ4 -0.001349589 -0.01006352 0.007273573 -0.002130187 -0.01308896 0.008676265 

π11 0.08853796 0.003165276 0.25051828 0.1628897 0.008058007 0.413029558 

π22 0.005470419 0.00171675 0.009413565 0.00408787 0.00037694 0.008677166 

π33 0.000371603 1.67805E-05 0.001008155 0.000747272 6.68908E-05 0.001665737 

π44 0.00018904 6.32702E-06 0.000586644 0.000259847 8.71429E-06 0.000790797 

π12 0.007217117 0.000187007 0.025352124 0.008982718 0.000245138 0.031855272 

π13 0.003508334 9.6682E-05 0.012187719 0.004598673 0.000131844 0.01587034 



37 

 

π14 0.00335176 9.58803E-05 0.011432031 0.004232707 0.000114802 0.014529145 

π23 0.000352817 9.55987E-06 0.001155804 0.000407717 1.05541E-05 0.00137657 

π24 0.000279678 7.88047E-06 0.00093312 0.000321295 8.64401E-06 0.001088868 

π34 0.000130108 3.87272E-06 0.000434543 0.000190157 5.22052E-06 0.000628641 

ψ1 0.01760067 0.000598656 0.053853581 0.0223857 0.000699414 0.070865838 

ψ2 0.01544286 0.008632272 0.022313269 0.01417511 0.005307952 0.022828577 

ψ3 0.001818763 9.11138E-05 0.00468398 0.002844195 0.000184473 0.006867365 

ψ4 0.001031738 3.63824E-05 0.003034414 0.001432367 5.12787E-05 0.004152524 

w1 -0.04305101 -0.05686121 -0.029993056 -0.05930241 -0.07905371 -0.040506481 

w2 0.004941528 0.00292663 0.006968493 0.005539683 0.002717738 0.008372986 

w3 0.000245166 -0.000867772 0.001349027 0.00047112 -0.001047336 0.002034965 

w4 3.14497E-05 -0.000976153 0.00105784 3.24742E-05 -0.001405177 0.001480557 

ϕ1 -0.09948864 -0.1386009 -0.062620948 -0.1160487 -0.165707 -0.068375919 

ϕ2 0.02318314 0.01179137 0.035010069 0.02839322 0.01233613 0.044752898 

ϕ3 0.000206595 -0.002663267 0.003074516 0.000534253 -0.00387031 0.004956209 

ϕ4 -0.000320574 -0.000844757 0.000189978 -0.000449142 -0.001330484 0.000413223 

       σ 0.3255726 0.2720959 0.377785054 0.4073819 0.3557411 0.459362552 

λ 4.013736 3.327364 4.931499505 4.025731 3.226282 5.114601016 

       q 1.007243 1.000184 1.026459915 1.006745 1.00017 1.025222478 

α1 0.3733011 0.2839632 0.476988061 0.2604554 0.1983607 0.334086789 

α2 0.6266989 0.5230119 0.716036814 0.7395446 0.6659132 0.801639253 

s1 4.353528 3.549725 5.441964561 3.195245 2.714313 3.787863766 

s2 3.833002 3.137094 4.656513502 3.727351 3.071032 4.496118437 

 

Table 6. Parameter estimated values (2007-2008) 

    2007     2008   

 

Mean Quart. 2.5 Quart. 97.5 Mean Quart. 2.5 Quart. 97.5 

cte 10.14014 9.972481 10.30237788 10.34732 101.4054 10.55057447 

γ1 0.4708065 0.2525862 0.674322901 0.5722866 0.3031464 0.828462659 

γ2 0.006123973 -0.01654819 0.029139484 0.007404153 -0.01673279 0.032745199 

γ3 0.001411512 -0.009658335 0.0127156 -0.001097232 -0.01285639 0.010814046 

γ4 -0.001746682 -0.01210329 0.008749365 -0.001904778 -0.01287983 0.009062091 

π11 0.1212265 0.005394652 0.326413512 0.1599907 0.007732211 0.41774053 

π22 0.004051314 0.000385153 0.008466765 0.005437384 0.001100437 0.010333741 

π33 0.000657764 5.35337E-05 0.001508455 0.000433055 1.73217E-05 0.001211712 

π44 0.000253501 8.94437E-06 0.000764835 0.000207046 6.04524E-06 0.00066093 

π12 0.008652488 0.000240972 0.030248832 0.01154446 0.000315801 0.039864972 

π13 0.004648162 0.000120799 0.015714684 0.005310333 0.000133026 0.018143499 

π14 0.004312861 0.00012509 0.014624586 0.005027208 0.000145134 0.016903432 

π23 0.000387496 1.11726E-05 0.001299313 0.000470345 1.34919E-05 0.001537936 
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π24 0.000311226 9.03098E-06 0.001067078 0.000349395 1.02702E-05 0.001181587 

π34 0.000177166 5.13371E-06 0.000578193 0.000159808 4.34228E-06 0.000536658 

ψ1 0.0179046 0.000612182 0.057163339 0.02196728 0.000690418 0.069915958 

ψ2 0.01590547 0.007958979 0.023778338 0.01038437 0.002600325 0.018398101 

ψ3 0.002602085 0.000160797 0.006314843 0.001862489 7.69982E-05 0.005096942 

ψ4 0.001311614 5.11183E-05 0.003826155 0.001105584 3.65261E-05 0.003385237 

w1 -0.05402173 -0.06985112 -0.038784435 -0.04669198 -0.06283956 -0.031360455 

w2 0.005975934 0.003633699 0.008340028 0.00415426 0.001990433 0.006357543 

w3 0.000448813 -0.0008447 0.001769793 0.000126284 -0.001064506 0.001337889 

w4 6.1603E-05 -0.001137201 0.001263563 7.98685E-06 -0.001101154 0.001129136 

ϕ1 -0.1226026 -0.1681808 -0.078460202 -0.08988481 -0.1350834 -0.04656021 

ϕ2 0.0285233 0.0149936 0.042392018 0.02003482 0.007731813 0.032866598 

ϕ3 0.00068739 -0.002704374 0.004025872 5.77747E-05 -0.002847153 0.002950595 

ϕ4 -0.000331766 -0.000908558 0.000253519 -0.000283807 -0.000715782 0.000139152 

       σ 0.3883262 0.3369021 0.438754673 0.3451994 0.2926763 0.399303053 

λ 4.208214 3.344677 5.424572372 3.609299 2.863625 4.653406794 

       q 1.005613 1.000137 1.020087736 1.019461 1.000498 1.072687122 

α1 0.2178712 0.1590782 0.287231246 0.4102552 0.3137282 0.515745862 

α2 0.7821288 0.7127688 0.840921793 0.5897448 0.4842541 0.686271844 

s1 3.137084 2.680883 3.6852295 4.588913 3.57559 5.949704997 

s2 4.609831 3.701227 5.746320869 3.048145 2.487865 3.705161055 

 

Table 7. Descriptive statistics - efficiency scores 

 2005 2006 2007 2008 

Mean 0.79673 0.79737 0.80465 0.77811 

Median 0.81269 0.80872 0.81584 0.80160 

St. dev. 0.08866 0.07646 0.07558 0.09845 

Quartile 1 0.75810 0.76170 0.77070 0.72961 

Quartile 3 0.85711 0.84977 0.85588 0.84671 

Maximum 0.92658 0.91987 0.92835 0.92946 

Minimum 0.37732 0.32509 0.43497 0.30630 

 

Table 8. The marginal product of pesticides 

 2005 2006 2007 2008 

Median 0.8195 0.7764 0.8786 0.6211 

Mean 0.9282 0.9056 1.0444 0.6731 
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Table 9. Composite index 

 Cereal Ind-oth 𝛼1 𝛼2 q Composite index 

2005 1.00000 1.00000 0.3733 0.6267 1.00724 1.00000 

2006 1.17757 1.17632 0.26046 0.73954 1.00675 1.17466 

2007 1.88282 1.50000 0.21787 0.78213 1.00561 1.58649 

2008 1.83545 1.88500 0.41026 0.58974 1.01946 1.88551 

 

Table 10. Marginal Product and Real Price 

 

Marginal  

Product 

Pesticides  

Price  

Output  

Price 

Real  

Price 

2005 0.81952 1.000 1.00000 1.0000 

2006 0.77643 1.002 1.17466 0.8530 

2007 0.87861 1.002 1.58649 0.6316 

2008 0.62108 1.035 1.88551 0.5489 

 

Table 11. The marginal products of pesticides of the two outputs 

 

2005 

 

2006 

 

2007 

 

2008 

 

 

Cer. Ind-Oth. Cer. Ind-Oth. Cer. Ind-Oth. Cer. Ind-Oth. 

Real Price 1.0000 1.0000 0.8509 0.8518 0.5322 0.6680 0.5664 0.5491 

Median 2.2047 1.3152 2.9960 1.0543 4.0530 1.1266 1.5280 1.0724 

Mean 2.4995 1.4882 3.4985 1.2286 4.8226 1.3385 1.6589 1.1594 

 Cer. et Ind-Oth. respectively represent the block of cereal production and the industrial-Other production.   

 

Table 12. The pesticide marginal product and size 

  Cereal Industrial-Other. UAA 

 Quartile 1 0.903 0.7218 69.54 

 Quartile 2 1.6405 1.3134 104.545 

2005 Quartile 3 2.3439 1.8736 134.17 

 Quartile 4 3.5094 2.8023 184.6 

     

 Quartile 1 1.0868 0.3848 70.985 

 Quartile 2 2.0502 0.7204 106.975 
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2006 Quartile 3 3.3165 1.1678 134.87 

 Quartile 4 4.7575 1.6713 188.26 

     

 Quartile 1 1.5502 0.4324 70.76 

 Quartile 2 2.966 0.8244 107.17 

2007 Quartile 3 4.1023 1.1379 136.97 

 Quartile 4 6.0114 1.6667 191.88 

     

 Quartile 1 0.6817 0.4805 69.53 

2008 Quartile 2 1.0322 0.7208 106.65 

 Quartile 3 1.4415 1.0122 135.65 

 Quartile 4 1.7364 1.212 190.85 

 

Table D1. Price indexes of cereal crops 

 2005 2006 2007 2008 

Wheat 100.0000 120.0000 189.3400 190.0000 

Durum wheat 100.0000 107.0000 174.0250 218.4400 

Spring barley 100.0000 114.8200 193.0000 169.3100 

Winter barley 100.0000 114.8200 193.0000 169.3100 

Corn 100.0000 115.3500 164.6000 161.8800 

Oat 100.0000 137.0250 197.1900 208.0000 

Irrigated corn 100.0000 115.3500 164.6000 151.8800 

Spring wheat 100.0000 120.0000 189.3400 190.0000 

Other cereals 100.0000 117.5000 183.1000 179.3000 

 

Table D2. Price indexes of Industrial-other crops 

 2005 2006 2007 2008 

Protein pea 100.0000 111.7000 181.2000 183.7000 

Beet 100.0000 81.8000 74.1000 71.000 

Potato 100.0000 159.3000 177.7000 121.6000 

Rape 100.0000 119.4000 150.0000 188.5000 

Sunflower 100.0000 96.6000 163.1000 160.9000 

Flax 100.0000 111.5000 94.3000 56.6000 

Poppy 100.0000 111.2000 118.1000 117.9000 

Lucerne 100.0000 97.1300 110.1750 171.3600 

Fodder 100.0000 98.3000 133.8000 192.2000 
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crops 

Fruits 100.0000 111.3000 118.2000 133.3000 

Vegetables 100.0000 110.1000 110.7000 107.1000 

Horticulture 100.0000 105.6000 102.6000 108.9000 

 

Table D3. Input price indexes 

 2005 2006 2007 2008 

Price index of fixe capital consumption 99.6000 102.4000 106.0000 112.4000 

Price index of intermediate consumption 100.0000 102.8000 108.8000 122.9000 

Price index of the crop protection products 100.0000 102.2000 102.2000 103.5000 

 

Figure 1.  Damage reduction function 

 

 

 

 


