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Abstract

Output-oriented plant capacity in a non-parametric framework is a concept that has

been rather widely applied since about twenty-five years. Conversely, input-oriented

plant capacity in this framework is a notion of more recent date. In this contribution,

we unify the building blocks needed for determining both plant capacity measures and

define new graph or non-oriented plant capacity concepts. We empirically illustrate the

differences between these various plant capacity notions using a secondary data set.

This shows the viability of these new definitions for the applied researcher.
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1 Introduction

The concept of plant capacity has been introduced in the economic literature by Johansen

(1968). Färe, Grosskopf, and Kokkelenberg (1989) and Färe, Grosskopf, and Valdmanis

(1989) provide an operational way to measure this concept using a non-parametric frontier

framework focusing on a single output and multiple outputs, respectively. Plant capacity

utilisation can then be determined from data on observed inputs and outputs by computing

a pair of output-oriented efficiency measures relative to a general specification of a non-

parametric frontier technology. This has led to a series of empirical applications mainly in

fisheries (e.g., Felthoven (2002)) and in the health care sector (for instance, Karagiannis

(2015)). There have also occurred some methodological refinements. One example is the

inclusion of this plant capacity notion in a decomposition of the Malmquist productivity

index (see De Borger and Kerstens (2000)). More recently, Cesaroni, Kerstens, and Van de

Woestyne (2017) use the same non-parametric frontier framework to define a new input-

oriented measure of plant capacity utilisation based on a couple of input-oriented efficiency

measures.

In this methodological contribution, we want to propose a new step and show how new

graph or non-oriented plant capacity concepts naturally follow from rewriting the existing

output- and input-oriented plant capacity utilisation notions. It is also the first time these

graph plant capacity notions are empirically applied. These new plant capacity concepts are

more general than the existing ones and provide new tools for the applied researcher.

This contribution is structured as follows. Section 2 provides some basic definitions re-

lated to the technology and its representation. The next Section 3 summarizes the existing

output- and input-oriented plant capacity utilisation notions and reports the similarities in

the building blocks needed for these plant capacity notions. In Section 4 we propose the new

graph or non-oriented plant capacity notions based on some existing graph or non-oriented

efficiency measures. We also establish some relations between these different plant capacity

notions. Section 5 develops a simple numerical example to illustrate the existing and new

plant capacity notions within the simplest possible setting. Section 6 offers and empirical

application using a secondary data set. The final section concludes.
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2 Technology: Basic Definitions

This section introduces some basic notation and defines the production technology. Given

an N -dimensional input vector x ∈ RN
+ and an M -dimensional output vector y ∈ RM

+ , the

production possibility set or production technology T is defined as follows: T = {(x, y) |
x can produce at least y}. Associated with technology T , the input set denotes all input

vectors x capable of producing at least a given output vector y: L(y) = {x | (x, y) ∈ T}.
Analogously, the output set associated with T denotes all output vectors y that can be

produced from at most a given input vector x: P (x) = {y | (x, y) ∈ T}.

In this contribution, we assume that the production technology T satisfies some combi-

nation of the following standard assumptions:

(T.1) Possibility of inaction and no free lunch, i.e., (0, 0) ∈ T and if (0, y) ∈ T , then y = 0.

(T.2) T is a closed subset of RN
+ × RM

+ .

(T.3) Strong input and output disposal, i.e., if (x, y) ∈ T and (x′, y′) ∈ RN
+ × RM

+ , then

(x′,−y′) ≥ (x,−y)⇒ (x′, y′) ∈ T .

(T.4) T is convex.

Briefly commenting these traditional assumptions on the production technology, it is

useful to recall the following (see, e.g., Hackman (2008) for details). Inaction is feasible,

and there is no free lunch. Technology is closed. We assume strong or free disposability

of inputs and outputs in that inputs can be wasted and outputs can be discarded at no

opportunity costs. Finally, technology is convex. In our empirical analysis not all these axioms

are simultaneously maintained.1

The radial input efficiency measure characterizes the input set L(y) completely. It can

be defined as follows:

DFi(x, y) = min{θ | θ ≥ 0, θx ∈ L(y)} = min{θ | θ ≥ 0, (θx, y) ∈ T}. (1)

This radial input efficiency measure has the main property that it is smaller than or equal

to unity (DFi(x, y) ≤ 1), with efficient production on the boundary (isoquant) of L(y) rep-

resented by unity. Furthermore, the radial input efficiency measure has a cost interpretation

(see, e.g., Hackman (2008)).

1For example, note that the convex variable returns to scale technology need not satisfy inaction.
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The radial output efficiency measure offers a complete characterization of the output set

P (x) and can be defined as follows:

DFo(x, y) = max{ϕ | ϕ ≥ 0, ϕy ∈ P (x)} = max{ϕ | ϕ ≥ 0, (x, ϕy) ∈ T}. (2)

Its main properties are that it is larger than or equal to unity (DFo(x, y) ≥ 1), with efficient

production on the boundary (isoquant) of the output set P (x) represented by unity. In

addition, this radial output efficiency measure has a revenue interpretation (e.g., Hackman

(2008)).

In the short run, we can partition the input vector x into a fixed (xf ) and variable

part (xv). In particular, we denote x = (xf , xv) with xf ∈ RNf

+ and xv ∈ RNv
+ such that

N = Nf +Nv. Fixed inputs are impossible to adjust in the short run, while variable inputs

are under complete control of management.

Similar to Färe, Grosskopf, and Valdmanis (1989), a short-run technology T f = {(xf , y) ∈
RNf

+ × RM
+ | there exist some xv such that (xf , xv) can produce at least y} and the corre-

sponding input set Lf (y) = {xf ∈ RNf

+ | (xf , y) ∈ T f} and output set P f (xf ) = {y |
(xf , y) ∈ T f} can be defined. Note that technology T f is in fact obtained by a projection of

technology T ∈ RN+M
+ into the subspace RNf+M

+ (i.e., by setting all variable inputs equal to

zero). By analogy, the same applies to the input set Lf (y) and the output set P f (xf ).

Denoting the radial output efficiency measure of the short-run output set P f (xf ) by

DF f
o (xf , y), this short-run output-oriented efficiency measure can be defined as follows:

DF f
o (xf , y) = max{ϕ | ϕ ≥ 0, ϕy ∈ P f (xf )} = max{ϕ | ϕ ≥ 0, (xf , ϕy) ∈ T f}. (3)

The sub-vector input efficiency measure reducing only the variable inputs is defined as

follows:

DF SR
i (xf , xv, y) = min{θ | θ ≥ 0, (xf , θxv) ∈ L(y)} = min{θ | θ ≥ 0, (xf , θxv, y) ∈ T}. (4)

Next, we need the following particular definition: L(0) = {x | (x, 0) ∈ T} is the input

set with zero output level. The sub-vector input efficiency measure reducing variable inputs

evaluated relative to this input set with a zero output level is as follows:

DF SR
i (xf , xv, 0) = min{θ | θ ≥ 0, (xf , θxv) ∈ L(0)} = min{θ | θ ≥ 0, (xf , θxv, 0) ∈ T}. (5)
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For the applications in Sections 5 and 6 respectively, we assume a convex non-parametric

frontier technology under the flexible or variable returns to scale assumption (VRS). Given

data on K observations (k = 1, . . . , K) consisting of a vector of inputs and outputs (xk, yk) ∈
RN

+ × RM
+ , this technology can algebraically be represented by

T V RS =

{
(x, y) | x ≥

K∑
k=1

zkxk, y ≤
K∑
k=1

zkyk,
K∑
k=1

zk = 1 and zk ≥ 0

}
. (6)

The activity vector z of real numbers summing to unity represents the convexity axiom. The

convex technology satisfies axioms (T.1) (except inaction) to (T.4).

Commonly, it is assumed that the input and output data satisfy a series of conditions

(Färe, Grosskopf, and Lovell (1994, p. 44-45)): (i) each producer employs non-negative

amounts of each input to produce non-negative amounts of each output; (ii) there is an

aggregate production of positive amounts of every output as well as an aggregate utilization

of positive amounts of every input; and (iii) each producer employs a positive amount of at

least one input to produce a positive amount of at least one output.

3 Plant Capacity Concepts: Basic Definitions

Recall the informal definition of plant capacity by Johansen (1968, p. 362) as “the maximum

amount that can be produced per unit of time with existing plant and equipment, provided

that the availability of variable factors of production is not restricted.” This clearly output-

oriented plant capacity notion has been admirably made operational by Färe, Grosskopf,

and Kokkelenberg (1989) and Färe, Grosskopf, and Valdmanis (1989) using a pair of output-

oriented efficiency measures. We now recall the definition of this output-oriented plant ca-

pacity utilization.

Definition 3.1. The output-oriented plant capacity utilization PCUo is defined as follows:

PCUo(x, x
f , y) =

DFo(x, y)

DF f
o (xf , y)

,

where DFo(x, y) and DF f
o (xf , y) are output efficiency measures including, respectively ex-

cluding, the variable inputs as defined before in (2) and (3).

Since 1 ≤ DFo(x, y) ≤ DF f
o (xf , y), notice that 0 < PCUo(x, x

f , y) ≤ 1. Thus, output-
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oriented plant capacity utilization has an upper limit of unity. Following the terminology

introduced by Färe, Grosskopf, and Kokkelenberg (1989), one can distinguish between a

so-called biased plant capacity measure DF f
o (xf , y) and an unbiased plant capacity measure

PCUo(x, x
f , y) depending on whether the measure ignores inefficiency or adjusts for the even-

tual existence of inefficiency. Taking the ratio of efficiency measures eliminates any existing

inefficiency and yields in this sense a cleaned concept of output-oriented plant capacity.

Recently, Kerstens, Sadeghi, and Van de Woestyne (2018) have argued and empirically

illustrated that the output-oriented plant capacity utilization PCUo(x, x
f , y) may be unreal-

istic in that the amounts of variable inputs needed to reach the maximum capacity outputs

may simply be unavailable at either the firm or the industry level. This is linked to what Jo-

hansen (1968) called the attainability issue. Hence, Kerstens, Sadeghi, and Van de Woestyne

(2018) define a new attainable output-oriented plant capacity utilization at the firm level as

follows:

Definition 3.2. An attainable output-oriented plant capacity utilization APCUo at level

λ̄ ∈ R+ is defined by

APCUo(x, x
f , y, λ̄) =

DFo(x, y)

ADF f
o (xf , y, λ̄)

,

where the attainable output-oriented efficiency measure ADF f
o at a certain level λ̄ ∈ R+ is

defined by

ADF f
o (xf , y, λ̄) = max{ϕ | ϕ ≥ 0, 0 ≤ θ ≤ λ̄, ϕy ∈ P (xf , θxv)}

= max{ϕ | ϕ ≥ 0, 0 ≤ θ ≤ λ̄, (xf , θxv, ϕy) ∈ T}. (7)

Again, since 1 ≤ DFo(x, y) ≤ ADF f
o (xf , y, λ̄), notice that 0 < APCUo(x, x

f , y, λ̄) ≤ 1.

Cesaroni, Kerstens, and Van de Woestyne (2017) define a new input-oriented plant ca-

pacity measure using a pair of input-oriented efficiency measures.

Definition 3.3. The input-oriented plant capacity utilization (PCUi) is defined as follows:

PCUi(x, x
f , y) =

DF SR
i (xf , xv, y)

DF SR
i (xf , xv, 0)

,

where DF SR
i (xf , xv, y) and DF SR

i (xf , xv, 0) are the sub-vector input efficiency measures

defined in (4) and (5), respectively.

Since 0 < DF SR
i (xf , xv, 0) ≤ DF SR

i (xf , xv, y), notice that PCUi(x, x
f , y) ≥ 1. Thus,

input-oriented plant capacity utilization has a lower limit of unity. Similar to the previous
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case, one can distinguish between a so-called biased plant capacity measure DF SR
i (xf , xv, 0)

and an unbiased plant capacity measure PCUSR
i (x, xf , y), the latter being cleaned of any

prevailing inefficiency.

The following proposition presents a first new result. It shows that the building blocks

needed for calculating the amount of PCUo(x, x
f , y) and PCUi(x, x

f , y) can be expressed

in similar models (i.e., maximization for output-orientation and minimization for input-

orientation) using the same constraints but with different objective functions and different

bounds on the decision variables.

Proposition 3.1.

i) The short-run output-oriented radial technical efficiency measure DF f
o (xf , y) is equiv-

alently solved as follows:

DF f
o (xf , y) = max{ϕ | θ ≥ 0, ϕ ≥ 0, (xf , θxv, ϕy) ∈ T}, (8)

whereby θ ≥ 0 allows to expand the observed variable inputs.

ii) The input-oriented short-run efficiency measure reducing variable inputs evaluated rel-

ative to the input set with a zero output level (DF SR
i (xf , xv, 0)) is equivalently solved

as follows:

DF SR
i (xf , xv, 0) = min{θ | θ ≥ 0, ϕ ≥ 0, (xf , θxv, ϕy) ∈ T}, (9)

whereby ϕ ≥ 0 allows for an adjustment of the observed outputs.

iii) The output-oriented technical efficiency measure DFo(x, y) is equivalently solved as

follows:

DFo(x, y) = max{ϕ | θ ≤ 1, ϕ ≥ 1, (xf , θxv, ϕy) ∈ T}, (10)

whereby θ ≤ 1 allows to contract the observed variable inputs.

iv) The input efficiency measure reducing only the variable inputs (DF SR
i (xf , xv, y)) is

equivalently solved as follows:

DF SR
i (xf , xv, y) = min{θ | θ ≤ 1, ϕ ≥ 1, (xf , θxv, ϕy) ∈ T}, (11)

whereby ϕ ≥ 1 allows for an adjustment of the observed outputs.

Proof. See Appendix A.
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We can make the following remarks regarding this first new result. Although these re-

marks are more general by nature, it might be useful checking out the corresponding models

in Appendix B assuming the convex non-parametric technology T V RS (see (6)). First, it is

important to understand that in these new formulations, expressions (8) to (11) all use the

same constraints (i.e., (xf , θxv, ϕy) ∈ T ). In the cases of output-orientation, maximization

is needed while input-orientation requires minimization. Also notice the difference in the

objective functions (i.e., ϕ in the case of output-orientation and θ for input-orientation). In

particular, model (8) aims to maximize the outputs by releasing the variable inputs, while

model (9) aims to minimize the variable inputs by releasing the outputs. The same result

holds true for models (10) and (11).

Second, notice that models (8) and (10) are identical except for the bounds applied to

the decision variables θ and ϕ. For DF f
o (xf , y), we have θ ≤ 1 and ϕ ≥ 1 that prevent to

increase the inputs and decrease the output components, while for DFo(x, y), we have θ ≥ 0

and ϕ ≥ 0. The same result holds true for models (9) and (11).

Third, note that in the new formulation of DF SR
i (xf , xv, 0) (i.e., model (9)), the right-

hand side of the output constraints is not zero. In fact, this model aims to obtain the

minimum amount of variable inputs such that the outputs are not restricted.

Since the input- and output-oriented plant capacity utilisation concepts share the same

structure, we are now in a position to extend these notions to the full space of inputs and

outputs.

4 Graph Efficiency Measurement and Plant Capacity

Utilisation

4.1 New Developments

Methodological research on efficiency (or inefficiency) measurement has early on focused on

measurement in the full space of inputs and outputs, which has been referred to as “graph

efficiency” measurement in the seminal book by Färe, Grosskopf, and Lovell (1985). An

extensive survey of such graph or non-oriented efficiency measures is provided by Russell

and Schworm (2011).2

2A survey of similar input-oriented efficiency measures can be found in the earlier article of Russell and
Schworm (2009).
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Färe, Grosskopf, and Lovell (1985, p. 110-111) define the hyperbolic efficiency index by

EH(x, y) = max{θ | (θ−1x, θy) ∈ T}, (12)

which can be considered as the first formulation of an efficiency index in the full input

and output space. This index contracts inputs and expands outputs along a (particular)

hyperbolic path to the frontier and maps into the [1,∞) interval. This hyperbolic graph

efficiency measure (12) extends the analysis of the radial input- and output-oriented efficiency

measures by allowing for the adjustment of both inputs and outputs in the measurement

of efficiency. However, this hyperbolic graph efficiency measure is rather restrictive since it

constrains the search for more efficient production plans to a hyperbolic path along which

all inputs are reduced and all outputs are increased in the same proportion.3

Under constant returns to scale (CRS), Färe, Grosskopf, and Zaim (2002) show that this

hyperbolic efficiency index is equal to both DFi(x, y)
1
2 and DFo(x, y)−

1
2 (i.e., the conven-

tional output- and input-oriented distance functions that can be solved using standard linear

programming (LP) techniques). But, under VRS, the hyperbolic efficiency index may not

be obtained by solving an LP-problem. To linearise this problem, Färe, Grosskopf, Lovell,

and Pasurka (1989) introduce a linear approximation of the non-linear set of constraints.

However, Zof́ıo and Lovell (2001) and Zof́ıo and Prieto (2001) show that this approximation

is only acceptable close to the efficient frontier. Hence, when a unit becomes more inefficient

the approximation worsens. To resolve the linearisation problem of the hyperbolic distance

function under VRS, Färe, Margaritis, Rouse, and Roshdi (2016) propose an LP-based com-

putational algorithm for estimating the exact value of the hyperbolic graph efficiency measure

by connecting it to the directional distance function proposed by Chambers, Chung, and Färe

(1998). We refer to Section 4.2 for more information concerning this distance function.

Starting from Färe, Grosskopf, and Lovell (1985, p. 126) one can define the generalized

Farrell graph measure as follows:

EFGL(x, y) = max{ϕ+ θ

2
| θ ≥ 1, ϕ ≥ 1, (θ−1x, ϕy) ∈ T}. (13)

This generalization of the hyperbolic efficiency measure permits the proportional reduction

in all inputs to differ from the proportional increase in all outputs when searching for a more

efficient production plan.4

3Färe, Grosskopf, and Zaim (2002) show that the hyperbolic graph efficiency measure can be given a
ratio-based return to the dollar interpretation.

4Färe, Grosskopf, and Lovell (1985, p. 126) do not consider the constraints θ ≥ 1, ϕ ≥ 1. But, it can
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A practical difficulty with this measure is that it must be computed from a non-linear

programming problem whose solution is not easily obtained. Therefore, we propose the al-

ternative graph efficiency measure

EG(x, y) = max{ϕ
θ
| θ ≤ 1, ϕ ≥ 1, (θx, ϕy) ∈ T}, (14)

which, although closely related, avoids this difficulty. Instead of combining input and output

radial measures in an additive way (see expression (13)), we define the graph efficiency

measure as the ratio between these input and output component measures.

Contrary to EFGL(x, y), EG(x, y) can more easily be computed since it requires solv-

ing an ordinary linear fractional programming problem which can be achieved using linear

programming (see Appendix B).5

Using the same structure, the sub-vector graph efficiency measure Ef
G(xf , xv, y) is defined

by

Ef
G(xf , xv, y) = max{ϕ

θ
| θ ≤ 1, ϕ ≥ 1, (xf , θxv, ϕy) ∈ T}. (15)

It simultaneously reduces all variable inputs and expands all outputs.

The sub-vector graph efficiency measure ESR
G (xf , xv, y) defined by

ESR
G (xf , xv, y) = max{ϕ

θ
| θ ≥ 0, ϕ ≥ 0, (xf , θxv, ϕy) ∈ T}, (16)

gives complete freedom to adjust both the variable inputs as well as the outputs. Notice that

models (15) and (16) are identical except for the bounds on the decision variables ϕ and θ.

Both efficiency measures Ef
G(xf , xv, y) and ESR

G (xf , xv, y) aim to maximize the ratio of

changes in outputs over changes in variable inputs. But, the main difference between these

efficiency measures is as follows. In the efficiency measure Ef
G(xf , xv, y), the output com-

ponents increase and the variable inputs decrease, while in the short-run efficiency measure

ESR
G (xf , xv, y) both variable inputs and output components are allowed to adjust in a flexible

way.

Note that if the variable ϕ is ignored in the objective function of models (15) and (16)

determining Ef
G(xf , xv, y) and ESR

G (xf , xv, y), we then obtain the reciprocal of the efficiency

be shown that it is necessary to include these constraints to avoid that EFGL(x, y) < 1 for some strongly
efficient units.

5Note that Pastor, Ruiz, and Sirvent (1999) proceeded in a similar way to transform the non-linear part
of the non-radial Russell graph measure proposed by Färe, Grosskopf, and Lovell (1985, p. 154). Thereafter,
Tone (2001) extended this proposal into the so-called slack-based measure (SBM).

10



measures DF SR
i (xf , xv, y) and DF SR

i (xf , xv, 0), determined by models (11) and (9), respec-

tively. Similarly, if the variable θ is ignored in the objective function of models (15) and (16),

we then obtain the efficiency measures DFo(x, y) and DF f
o (xf , xv, y), determined by models

(10) and (8), respectively.

We now introduce different graph plant capacity notions using the above defined input-

oriented, output-oriented and graph efficiency measures.

Definition 4.1. The graph non-oriented plant capacity utilization GPCU is defined as

follows:

GPCU(x, xf , y) =
Ef
G(xf , xv, y)

ESR
G (xf , xv, y)

.

Note that GPCU(x, xf , y) ≤ 1 since 0 < Ef
G(xf , xv, y) ≤ ESR

G (xf , xv, y).

We have by definition no limitations on the available amounts of variable inputs for the

original output-oriented plant capacity utilisation PCUo(x, x
f , y). However, in some empiri-

cal settings this is not realistic and we have to limit the amount of variable inputs available

at either the firm or the industry level (see Kerstens, Sadeghi, and Van de Woestyne (2018)

for details). One way to limit the amounts of variable inputs is as follows. It may be rea-

sonable that the amount of increase in the variable inputs is proportional to the increase

in the amount of outputs. Hence, we define an output-oriented plant capacity utilisation in

graph space by considering the changes of inputs. The graph output-oriented plant capacity

utilization can now be defined as follows:

Definition 4.2. The graph output-oriented plant capacity utilization GPCUo is defined as

follows:

GPCUo(x, x
f , y) =

DFo(x, y)

GDF SR
o (xf , xv, y)

,

where GDF SR
o (xf , xv, y) is the optimal value of ϕ in model (16).

Note that GPCUo(x, x
f , y) ≤ 1 just like GPCU(x, xf , y) ≤ 1 and PCUo(x, x

f , y) ≤ 1.

As already mentioned in Section 3, the original output-oriented plant capacity utilization

PCUo suffers from the attainability issue. Hence, Kerstens, Sadeghi, and Van de Woestyne

(2018) introduce APCUo (see Definition 3.2) by imposing bounds on the availability of its

variable inputs in a general way. Definition 4.2 can also provide another approach to solve

the attainability issue. In fact, if we ignore the variable θ in the objective function of model

(16), then GPCUo(x, x
f , y) becomes PCUo(x, y). Actually, the variable θ in the objective

function prevents an increase of the variable inputs and allows the variable inputs to increase
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only as far as the ratio of changes in outputs over changes of variable inputs is maximized.

However, in the following proposition, we show that GPCUo is a special case of APCUo.

Proposition 4.1. Assume that θ∗ is the optimal value of θ in model (16). Then, we have:

i) GDF SR
o (xf , xv, y) = ADF f

o (xf , y, θ∗);

ii) GPCUo(x, x
f , y) = APCUo(x, x

f , y, θ∗).

Proof. See Appendix A.

Proposition 4.1 shows that if we use the attainable level λ̄ = θ∗, then the graph output-

oriented and the attainable output-oriented plant capacity utilization concepts offer the same

results. Note that APCUo(x, x
f , y, λ̄) depends on the attainable level λ̄ that is determined

by the decision maker. But, in some situations he or she may not be able to determine

this attainability level. Therefore, the defined attainability in Definition 4.2 can offer a good

choice to determine some reasonable bound on available variable inputs.

In a similar way, the graph input-oriented plant capacity utilization can be defined as:

Definition 4.3. The graph input-oriented plant capacity utilization (GPCUi) is defined as

follows:

GPCUi(x, x
f , y) =

DFi(x, x
f , y)

GDF SR
i (xf , xv, y)

,

where GDF SR
i (xf , xv, y) is the optimal value of θ in model (16).

Note that GPCUi(x, x
f , y) ≥ 1 just like PCUi(x, x

f , y) ≥ 1.

Proposition 4.2. The following relations between the original graph as well as the special

case graph output- and graph input-oriented plant capacity utilization notions as well as their

components can be established:

i) DF SR
i (xf , xv, 0) ≤ GDF SR

i (xf , xv, y) ≤ GDF SR
o (xf , xv, y) ≤ DF f

o (xf , y);

ii) PCUo(x, x
f , y) ≤ GPCUo(x

v, xf , y);

iii) GPCUi(x
v, xf , y) ≤ PCUi(x

v, xf , y).

iv) GPCU(x, xf , y)
>
=
<
GPCUo(x, x

f , y)
>
=
<
GPCUi(x, x

f , y)

v) GPCU(x, xf , y) ≤ PCUi(x
v, xf , y)

12



vi) GPCU(x, xf , y)
>
=
<
PCUo(x, x

f , y) and GPCU(x, xf , y)−1 ≥ PCUo(x, x
f , y).

Proof. See Appendix A.

Note that GPCU(x, xf , y) is in general different from its special input- and output-

oriented graph versions GPCUi(x, x
f , y) and GPCUo(x, x

f , y), respectively. Furthermore,

GPCU(x, xf , y) is also distinct from the traditional input- and output-oriented plant capac-

ity concepts PCUi(x
v, xf , y) and PCUo(x, x

f , y), respectively. Finally, GPCUi(x, x
f , y) and

GPCUo(x, x
f , y) differ in general from PCUi(x

v, xf , y) and PCUo(x, x
f , y), respectively.

4.2 Link to Graph Capacity Measure Based on Directional Dis-

tance Function

The directional distance function ED(x, y, gx, gy) proposed by Chambers, Chung, and Färe

(1998) is defined by

ED(x, y, gx, gy) = max{β | (x− βgx, y + βgy) ∈ T}. (17)

This distance function simultaneously seeks to expand outputs and contract inputs in the

direction of the vector (−gx, gy) ∈ RN
− × RM

+ . The latter directional vector determines how

the input-output vector (x, y) is projected onto the boundary of T at (x − β∗gx, y + β∗gy),

whereby β∗ = ED(x, y, gx, gy).
6

Partitioning the input vector x into fixed xf and variable xv, the sub-vector directional

distance function is defined by

ESR
D (xv, xf , y, gvx, gy) = max{β | (xf , xv − βgvx, y + βgy) ∈ T}. (18)

Färe and Grosskopf (2000) are the first to use this directional distance function as a

tool for defining a theoretical graph-oriented plant capacity utilization indicator.7 In fact,

they expand the outputs and contract the fixed inputs in the graph-oriented plant capacity

measure using the directional distance function.

6See Russell and Schworm (2011) for an almost complete overview of graph or non-oriented efficiency
measures, including the directional distance function.

7Yang and Fukuyama (2018) seemingly independently also define a graph-oriented plant capacity measure
using the directional distance function while also distinguishing between good and bad outputs. These same
authors are -to the best of our knowledge- the first to empirically apply this particular graph-oriented plant
capacity utilization indicator based on the directional distance function.
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We now show in the following propositions that the building blocks needed for computing

all plant all capacity measures hitherto defined in this contribution can be obtained from the

directional distance functions ED and ESR
D by choosing appropriate direction vectors. For

the proofs, we refer to Appendix A.

Proposition 4.3. Assume that (θ∗, ϕ∗) is an optimal solution obtained by solving the fol-

lowing model:

DF f
o (xf , y) = max{ϕ | θ ≥ 0, ϕ ≥ 0, (xf , θxv, ϕy) ∈ T}. (19)

Letting

gvx =
(1− θ∗)

DF f
o (xf , y)

xv, and

gy =
(ϕ∗ − 1)

DF f
o (xf , y)

y,

then DF f
o (xf , y) = ESR

D (xv, xf , y, gvx, gy).

Note that if (θ∗, ϕ∗) = (1, 1), then we put ESR
D (xv, xf , y, gvx, gy) = 1.

Proposition 4.4. Assume that (θ∗, ϕ∗) is an optimal solution obtained by solving the fol-

lowing model:

DFo(x, y) = max{ϕ | θ ≤ 1, ϕ ≥ 1, (xf , θxv, ϕy) ∈ T}. (20)

Letting

gvx =
(1− θ∗)
DFo(x, y)

xv, and

gy =
(ϕ∗ − 1)

DFo(x, y)
y,

then DFo(x, y) = ESR
D (xv, xf , y, gvx, gy).

Note that if (θ∗, ϕ∗) = (1, 1), then we put ESR
D (xv, xf , y, gvx, gy) = 1.

Proposition 4.5. Assume that (θ∗, ϕ∗) is an optimal solution obtained by solving the fol-

lowing model:

DF SR
i (xf , xv, 0) = min{θ | θ ≥ 0, ϕ ≥ 0, (xf , θxv, ϕy) ∈ T}. (21)

Letting

gvx =
(1− θ∗)

DF SR
i (xf , xv, 0)

xv, and

gy =
(ϕ∗ − 1)

DF SR
i (xf , xv, 0)

y,
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then DF SR
i (xf , xv, 0) = ESR

D (xv, xf , y, gvx, gy).

Note that if (θ∗, ϕ∗) = (1, 1), then we put ESR
D (xv, xf , y, gvx, gy) = 1.

Proposition 4.6. Assume that (θ∗, ϕ∗) is an optimal solution obtained by solving the fol-

lowing model:

DF SR
i (xf , xv, y) = min{θ | θ ≤ 1, ϕ ≥ 1, (xf , θxv, ϕy) ∈ T}. (22)

Letting

gvx =
(1− θ∗)

DF SR
i (xf , xv, y)

xv, and

gy =
(ϕ∗ − 1)

DF SR
i (xf , xv, y)

y,

then DF SR
i (xf , xv, y) = ESR

D (xv, xf , y, gvx, gy).

Note that if (θ∗, ϕ∗) = (1, 1), then we put ESR
D (xv, xf , y, gvx, gy) = 1.

Proposition 4.7. Assume that (θ∗, ϕ∗) is an optimal solution obtained by solving the fol-

lowing model:

Ef
G(xf , xv, y) = max{ϕ

θ
| θ ≤ 1, ϕ ≥ 1, (xf , θxv, ϕy) ∈ T}. (23)

Letting

gvx =
(1− θ∗)

Ef
G(xf , xv, y)

xv, and

gy =
(ϕ∗ − 1)

Ef
G(xf , xv, y)

y,

then Ef
G(xf , xv, y) = ESR

D (xv, xf , y, gvx, gy).

Note that if (θ∗, ϕ∗) = (1, 1), then we put ESR
D (xv, xf , y, gvx, gy) = 1.

Proposition 4.8. Assume that (θ∗, ϕ∗) is an optimal solution obtained by solving the fol-

lowing model:

ESR
G (xf , xv, y) = max{ϕ

θ
| θ ≥ 0, ϕ ≥ 0, (xf , θxv, ϕy) ∈ T}. (24)

Letting

gvx =
(1− θ∗)

ESR
G (xf , xv, y)

xv, and

gy =
(ϕ∗ − 1)

ESR
G (xf , xv, y)

y,
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then ESR
G (xf , xv, y) = ESR

D (xv, xf , y, gvx, gy).

Note that if (θ∗, ϕ∗) = (1, 1), then we put ESR
D (xv, xf , y, gvx, gy) = 1.

Therefore, one may consider the graph-oriented plant capacity utilization indicator based

on the directional distance function as a special case of our graph-oriented plant capacity

utilization indices.

5 Numerical Example

We illustrate the ease of implementing these new graph plant capacity definitions introduced

in this contribution by using a small example of artificial data. We refer to Appendix B for

an overview on how to compute the necessary components of the plant capacity notions

assuming a convex non-parametric technology under VRS. Table 1 contains 16 fictitious

observations with two inputs generating a single output: one input is variable, the other one

is fixed.

Table 1: Numerical Example of 16 Fictitious Observations
Observations xv xf y

1 7 6 2

2 3 5 2

3 5 4 3

4 6 3 3

5 7 4 3

6 4 9 4

7 11 3 4

8 5 6 4

9 6 3 4

10 6 7 5

11 5 8 5

12 8 6 5

13 10 5 5

14 6 10 6

15 7 8 6

16 10 7 6

The results of the traditional input- and output plant capacity measures and their com-

ponents are reported in Table 2. Observe that the observations with a unit value for PCUi(.)
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and PCUo(.) are different in general: solely observations 4, 5 and 7 have a unity plant capac-

ity in both cases. This confirms that both these plant capacity measures evaluate different

things.

Table 2: Input- and Output-oriented Plant Capacity Utilization and Components
PCUi(.) PCUo(.)

DF SR
i (xf , xv, y) DF SR

i (xf , xv, 0) PCUi(.) DFo(.) DF f
o (.) PCUo(.)

1 0.4286 0.4286 1.0000 2.6250 2.7500 0.9545

2 1.0000 1.0000 1.0000 1.0000 2.5000 0.4000

3 0.9000 0.9000 1.0000 1.1538 1.5000 0.7692

4 1.0000 1.0000 1.0000 1.3333 1.3333 1.0000

5 0.6429 0.6429 1.0000 1.5000 1.5000 1.0000

6 1.0000 0.7500 1.3333 1.0000 1.5000 0.6667

7 0.5455 0.5455 1.0000 1.0000 1.0000 1.0000

8 0.9500 0.6000 1.5833 1.0577 1.3750 0.7692

9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0.9333 0.5000 1.8667 1.0400 1.2000 0.8667

11 1.0000 0.6000 1.6667 1.0000 1.2000 0.8333

12 0.7750 0.3750 2.0667 1.0750 1.1000 0.9773

13 0.8000 0.3000 2.6667 1.0000 1.0000 1.0000

14 1.0000 0.5000 2.0000 1.0000 1.0000 1.0000

15 1.0000 0.4286 2.3333 1.0000 1.0000 1.0000

16 1.0000 0.3000 3.3333 1.0000 1.0000 1.0000

The results of the new graph plant capacity concept GPCU(x, xf , y) as well as its spe-

cial input- and output-oriented graph versions GPCUi(x, x
f , y) and GPCUo(x, x

f , y) are

reported in Table 3. This same table also contains their respective component efficiency

measures. Observe that observations 1, 5 and 14 with a unit value for GPCU(x, xf , y) have

different values for GPCUi(x, x
f , y) and GPCUo(x, x

f , y). By contrast, observations 4, 6-7, 9

and 11 are unity for all three graph capacity notions. For the observations which are different

from unity, all three graph capacity notions in general differ.
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Table 3: Graph Plant Capacity Utilization, Graph Input- and Output-Oriented Plant Ca-
pacity Utilization, and Components

GPCU(.) GPCUi(.) GPCUo(.)

Ef
G(.) ESR

G (.) GPCU(.) GDF SR
i (.) GPCUi(.) GDF SR

o (.) GPCUo(.)

= λ̄ = APCU(., λ̄)

1 2.9815 2.9815 1.0000 0.7714 0.5556 2.3000 1.1413

2 1.0000 1.1786 0.8485 1.8667 0.5357 2.2000 0.4545

3 1.1538 1.2069 0.9560 1.1600 0.7759 1.4000 0.8242

4 1.3333 1.3333 1.0000 1.0000 1.0000 1.3333 1.0000

5 1.6897 1.6897 1.0000 0.8286 0.7759 1.4000 1.0714

6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

7 1.8333 1.8333 1.0000 0.5455 1.0000 1.0000 1.0000

8 1.0577 1.0648 0.9933 1.0800 0.8796 1.1500 0.9197

9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 1.0714 1.1077 0.9673 0.8667 1.0769 0.9600 1.0833

11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

12 1.2903 1.3630 0.9467 0.6750 1.1481 0.9200 1.1685

13 1.2500 1.5714 0.7955 0.5600 1.4286 0.8800 1.1364

14 1.0000 1.0000 1.0000 0.6667 1.5000 0.6667 1.5000

15 1.0000 1.1667 0.8571 0.7143 1.4000 0.8333 1.2000

16 1.0000 1.5385 0.6500 0.5200 1.9231 0.8000 1.2500

Figure 1: Visualization of the different components of PCUi, PCUo and GPCU applied to
observation 12
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Figure 1 shows the (xv, y)-combinations determined by the optimal solutions of those

models needed for computing PCUi, PCUo and GPCU applied to observation 12 (black solid

circle). The values mentioned below can be found in Tables 2 and 3 except for the values of

ϕ∗ and θ∗. Observe in Figure 1 the original observations (gray solid circles) with fixed input

smaller than or equal to the fixed input of observation 12 and the corresponding frontier.

Applying (11) to compute DF SR
i (xf , xv, y) on this observation results in the efficiency value

0.7750 with ϕ∗ = 1 and θ∗ = 0.7750. Consequently, the variable input is reduced without

expanding the output. The resulting (xv, y)-combination is depicted by the black circle (◦)

located on the frontier. Applying (9) to compute DF SR
i (xf , xv, 0) yields 0.3750 with ϕ∗ = 0

and θ∗ = 0.3750. So, by allowing to reduce outputs to the level of zero, the variable input can

be reduced further. Combining the optimal variable input and output level realizes the point

visualized by a diagonal cross (×). Since there is only one variable input and one output

in this example, PCUi(x, x
f , y) boils down to the ratio of the horizontal distance from the

point ◦ to the y-axis over the horizontal distance from the point × to the y-axis.

Using (10) to compute DFo(x, y) for observation 12 leads to the optimal value 1.0750

with ϕ∗ = 1.0750 and θ∗ = 1. Now, the output is maximally increased without reducing the

variable input. The corresponding optimal (xv, y)-combination is visualized by the black box

(�) in Figure 1. Using (8) to determine DF f
o (xf , y) results in the optimal value 1.1000 with

ϕ∗ = 1.1000 and θ∗ = 1.2813. So, by allowing an increase of the variable input, the output

can be increased by this factor 1.1000. The corresponding optimal (xv, y)-combination is

visualized by the asterisk (?). Since there is only one variable input and one output in this

example, PCUo(x, x
f , y) corresponds with the ratio of the vertical distance from the point

� to the xv-axis over the vertical distance from the point ? to the xv-axis.

Computing the sub-vector graph efficiency Ef
G(xf , xv, y) defined by (15) for observation 12

leads to the optimal value 1.2903 with ϕ∗ = 1 and θ∗ = 0.7750. Obviously, the maximal ratio
ϕ∗

θ∗
is realized by reducing the variable input and keeping the output at the same level. This

results in the optimal (xv, y)-combination depicted in Figure 1 by the cross (+). Note that this

point coincides for observation 12 with the optimal point realized by DF SR
i and visualized

by ◦. Using (16), the sub-vector graph efficiency ESR
G (xf , xv, y) for observation yields the

optimal ratio ϕ∗

θ∗
= 1.3630 with ϕ∗ = 0.9200 and θ∗ = 0.6750. Thus, the optimal ratio is

obtained by reducing both the variable input and the output. The corresponding optimal

(xv, y)-combination is visualized by the diamond (�). The ratio of the ratios ϕ∗

θ∗
mentioned

above yields GPCU(x, xf , y) = 0.9467.

We explore the differences between these graph plant capacity notions in more detail in

the empirical illustration in the next Section 6.
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6 Empirical Illustration

6.1 Secondary Data Set

For an overview of the models used in this empirical illustration assuming a convex non-

parametric technology under VRS, we refer to Appendix B. We select a secondary data set

from the Journal of Applied Econometrics Data Archive8 and opt for an unbalanced panel of

three years of French fruit producers from Ivaldi, Ladoux, Ossard, and Simioni (1996) based

on annual accounting data collected in a survey. These farms were selected on mainly two

criteria: (i) the apple production must be positive, and (ii) the orchard acreage is five acres

at least. This short panel covers three successive years from 1984 to 1986. The technology

consists of three aggregate inputs producing two aggregate outputs. The three inputs are

(i) capital (including land), (ii) labor, and (iii) materials; while the two outputs are (i) the

apple production, and (ii) an aggregate of other products. Descriptive statistics for the 405

observations in total and details on the definitions of all variables are available in Appendix

2 of Ivaldi, Ladoux, Ossard, and Simioni (1996). Note that the short length of the panel

(just three years) warrants the use of an intertemporal technology that essentially ignores

any eventual technical change.

6.2 Empirical Results

The descriptive statistics for the traditional input- and output-oriented plant capacity uti-

lization measures as well as their components are reported in Table 4. We report the average,

the standard deviation, and the minima and maxima depending on the context. These de-

scriptive statistics seem to confirm that both concepts clearly differ from one another (see

Cesaroni, Kerstens, and Van de Woestyne (2017) for a detailed empirical analysis confirming

this observation).

Table 4: Descriptive Statistics of Input- and Output-oriented Plant Capacity Utilization
PCUi(.) PCUo(.)

DF SR
i (xf , xv, y) DF SR

i (xf , xv, 0) PCUi(.) DFo(.) DF f
o (.) PCUo(.)

Average 0.5881 0.4233 1.7337 3.4924 5.4149 0.7105

Stand.Dev. 0.1924 0.1950 1.6360 2.6312 4.6781 0.2211

Minimum 0.1868 0.0473 1 1 1 0.0701

Maximum 1 1 21.1414 16.2869 35.2953 1

8See the web site: http://qed.econ.queensu.ca/jae/.
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The descriptive statistics for new graph plant capacity concept GPCU(x, xf , y) as well as

its special input- and output-oriented graph versions GPCUi(x, x
f , y) and GPCUo(x, x

f , y)

are reported in Table 5. Also the component efficiency measures are listed in the same table.

We can make the following observations. First, the descriptive statistics indicate that all

three graph capacity notions in general seem to differ.

Table 5: Descriptive Statistics of Various Graph Plant Capacity Utilization Concepts
GPCU(.) GPCUi(.) GPCUo(.)

Ef
G(.) ESR

G (.) GPCU(.) λ̄ = GDF SR
i (.) GPCUi(.) GDF SR

o (.) GPCUo(.) = APCU(., λ̄)

Average 3.6971 3.9243 0.9430 1.0463 0.6742 4.2375 1.0240

Stand.Dev. 2.7219 2.8763 0.1049 0.4366 0.5713 4.1750 0.4875

Minimum 1 1 0.1521 0.1333 0.1842 0.2804 0.0835

Maximum 16.2869 16.4006 1 2.9549 7.5025 33.1387 3.5658

Second, note that based on Proposition 4.1, GPCUo(x, x
f , y) = APCUo(x, x

f , y, λ̄).

Hence, the last column of Table 5 reports the attainable output-oriented plant capacity

utilisation at level λ̄ = θ∗, where θ∗ is the optimal value of θ in model (16). Hence,

λ̄ = GDF SR
i (x, xf , y) which is reported in the fifth column of Table 5. While the attain-

able output-oriented plant capacity utilization APCUo(x, x
f , y, λ̄) depends on the attainable

level λ̄ determined by the decision maker, the defined attainability in Definition 4.2 (i.e.,

GPCUo(x, x
f , y) = APCUo(x, x

f , y, λ̄)) can be a good choice to determine some reasonable

bound on the available variable inputs. As can be seen in the fifth column of Table 5, the

average of attainability level λ̄ is 1.0463 with the standard deviation 0.4366. With this pro-

posed attainability level λ̄ we obtain on average a 1.0240 output magnification, while the

maximum increase in outputs amounts to 3.5658 times. It suffices to put this in contrast with

the biased plant capacity measure DF f
o (x, xf , y). There is a lot of variation in DF f

o (x, xf , y)

as indicated by the standard deviation and the range is even huge: the maximum increase in

outputs amounts to 35.2953 times. Our approach clearly avoids such extreme magnifications

and therefore remains attainable.

To test whether any of the above results are statistically significant, we choose the formal

test statistic proposed by Li (1996) and refined by Fan and Ullah (1999) and Li, Maasoumi,

and Racine (2009) (henceforth Li-test). This Li-test has the null hypothesis that both dis-

tributions are equal for a given efficiency score or plant capacity notion. Its alternative

hypothesis is simply that both distributions differ. This test is valid for both dependent and

independent variables: dependency is a characteristic of frontier estimators, since frontier

efficiency depend on sample size, among others. Table 6 reports the Li-test statistics for

all plant capacity concepts discussed in this contribution. A glance at Table 6 shows that

all plant capacity concepts follow two by two significantly different distributions and thus
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capture an independent part of reality.

Table 6: Li-Test between All Unbiased Plant Capacity Notions
PCUi(.) PCUo(.) GPCU(.) GPCUi(.) GPCUo(.)

PCUi(.) 74.606*** 143.6798*** 124.5037*** 17.558***

PCUo(.) 74.606*** 71.1327*** 21.742*** 20.6112***

GPCU(.) 143.6798*** 71.1327*** 145.117*** 110.6579***

GPCUi(.) 124.5037*** 21.742*** 145.117*** 55.832***

GPCUo(.) 17.558*** 20.6112*** 110.6579*** 55.832***
Li test: critical values at 1% level= 2.33(∗ ∗ ∗); 5% level= 1.64(∗∗); 10%level= 1.28(∗).

7 Conclusions

While the output-oriented plant capacity concept has been around for about three decades

and has been the basis for quite some empirical applications, the input-oriented plant ca-

pacity concept is of more recent date. However, this original output-oriented plant capacity

utilization suffers from the so-called attainability issue, which has led Kerstens, Sadeghi,

and Van de Woestyne (2018) to define an attainable output-oriented plant capacity notion.

This contribution has taken a next logical step by looking for graph efficiency measures to

define some new graph-oriented plant capacity concepts. Apart from some new definitions,

relations between these capacity concepts have been established. A small numerical example

has illustrated these various concepts and an empirical application on a secondary data set

has revealed the factual differences between these different notions.

We end by outlining a potential avenue for future research. For instance, there are some

indications that slacks may play a role in the measurement of plant capacity utilization (e.g.,

Dupont, Grafton, Kirkley, and Squires (2002), or Vestergaard, Squires, and Kirkley (2003)).

Of course, on a priori grounds one would expect that slacks play less role for graph-oriented

plant capacity that are more likely to project on the efficient subset of technology than

for output- or input-oriented plant capacity notions. But, this issue certainly merits further

attention.
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Appendices: Supplementary Material

A Proof of Propositions

Proof of Proposition 3.1:

(i) Suppose that

ϕ∗ = max{ϕ | ϕ ≥ 0, (xf , ϕy) ∈ T f}, (25)

and

ϕ∗∗ = max{ϕ | θ ≥ 0, ϕ ≥ 0, (xf , θxv, ϕy) ∈ T}. (26)

We must show that ϕ∗ = ϕ∗∗. On the one hand, since (xf , ϕ∗y) ∈ T f , then there is a

θ̄ ≥ 0 such that (xf , θ̄xv, ϕ∗y) ∈ T . Hence, (θ̄, ϕ∗) is a feasible solution of model (26).

Thus, ϕ∗∗ ≥ ϕ∗. On the other hand, assume that θ∗∗ is the optimal value of variable

θ in model (26). So, (xf , θ∗∗xv, ϕ∗∗y) ∈ T . Thus, (xf , ϕ∗∗y) ∈ T f . Hence, ϕ∗∗ ≤ ϕ∗.

Therefore, we have ϕ∗ = ϕ∗∗.

(ii) Suppose that

θ∗ = min{θ | θ ≥ 0, (xf , θxv, 0) ∈ T}, (27)

and

θ∗∗ = min{θ | θ ≥ 0, ϕ ≥ 0, (xf , θxv, ϕy) ∈ T}. (28)

We must show that θ∗ = θ∗∗. On the one hand, since (xf , θ∗xv, 0) ∈ T , therefore

(θ̄ = θ∗, ϕ̄ = 0) is a feasible solution of model (28). Thus, θ∗∗ ≤ θ∗. On the other

hand, assume that ϕ∗∗ is the optimal value of variable ϕ in model (28). Hence,

(xf , θ∗∗xv, ϕ∗∗y) ∈ T . Based on the strong input disposal assumption (assumption

(T.3)), we have (xf , θ∗∗xv, 0) ∈ T . Thus, θ∗ ≤ θ∗∗. Therefore, we have θ∗ = θ∗∗.

(iii) Suppose that

ϕ∗ = max{ϕ | ϕ ≥ 0, (x, ϕy) ∈ T}, (29)

and

ϕ∗∗ = max{ϕ | θ ≤ 1, ϕ ≥ 1, (xf , θxv, ϕy) ∈ T}. (30)

We must show that ϕ∗ = ϕ∗∗. Since ϕ̄ = 1 is a feasible solution of model (29), we have

ϕ∗ ≥ 1, hence, (θ∗ = 1, ϕ∗) is a feasible solution of model (30). Thus, ϕ∗∗ ≥ ϕ∗. Also,

assume that (θ∗∗, ϕ∗∗) is an optimal solution of model (30). Thus, (xf , θ∗∗xv, ϕ∗∗y) ∈ T .

Since θ∗∗ ≤ 1, hence, θ∗∗xv ≤ xv. Based on the strong input disposal assumption
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(assumption (T.3)), we have (xf , xv, ϕ∗∗y) ∈ T . Therefore, (x, ϕ∗∗y) ∈ T . Thus, ϕ∗ ≥
ϕ∗∗. Therefore, we have ϕ∗ = ϕ∗∗.

(iv) Suppose that

θ∗ = min{θ | θ ≥ 0, (xf , θxv, y) ∈ T}, (31)

and

θ∗∗ = min{θ | θ ≤ 1, ϕ ≥ 1, (xf , θxv, ϕy) ∈ T}. (32)

We must show that θ∗ = θ∗∗. Since θ̄ = 1 is a feasible solution of model (31), we have

θ∗ ≤ 1, hence, (θ∗, ϕ∗ = 1) is a feasible solution of model (32). Thus, θ∗∗ ≤ θ∗. Also,

assume that (θ∗∗, ϕ∗∗) is an optimal solution of model (32). Thus, (xf , θ∗∗xv, ϕ∗∗y) ∈ T .

Since ϕ∗∗ ≥ 1, hence, ϕ∗∗y ≥ y. Based on the strong output disposal assumption

(assumption (T.3)), we have (xf , θ∗∗xv, y) ∈ T . Thus, θ∗ ≤ θ∗∗. Therefore, we have

θ∗ = θ∗∗.

Proof of Proposition 4.1:

(i) Assume that (θ∗, ϕ∗) and (θ∗∗, ϕ∗∗) are the optimal solutions of determining models

ADF f
o (xf , y, λ̄) and ESR

G (xf , xv, y), respectively. Note that we assumed that λ̄ = θ∗∗.

On the one hand, since θ∗ ≤ θ∗∗, we have θ∗xv ≤ θ∗∗xv. Based on the strong output

disposal assumption (assumption (T.3)), (xf , θ∗∗xv, ϕ∗y) ∈ T . Thus, (θ∗∗, ϕ∗) is a fea-

sible solution of determining model ESR
G (xf , xv, y), therefore we have ϕ∗

θ∗∗
≤ ϕ∗∗

θ∗∗
. Since

θ∗∗ > 0, thus ϕ∗ ≤ ϕ∗∗. On the other hand, since the optimal solution of determining

model ESR
G (xf , xv, y) (i.e., (θ∗∗, ϕ∗∗)) is also a feasible solution of determining model

ADF f
o (xf , y, λ̄), therefore we have ϕ∗∗ ≤ ϕ∗. Therefore, ϕ∗∗ = ϕ∗.

(ii) Based on part (i), we have that GDF SR
o (xf , xv, y) = ADF f

o (xf , y, λ̄). Therefore,
DFo(x,y)

GDFSR
o (xf ,xv ,y)

= DFo(x,y)

ADF f
o (xf ,y,λ̄

.

Proof of Proposition 4.2:

(i) Proof of DF SR
i (xf , xv, 0) ≤ GDF SR

i (xf , xv, y): Assume that (θ∗, ϕ∗) is the optimal

solutions of determining model ESR
G (xf , xv, y). Therefore, (θ∗, ϕ∗) is also a feasible so-

lution of determining model DF SR
i (xf , xv, 0). Hence, we have DF SR

i (xf , xv, 0) ≤ θ∗ =

GDF SR
i (xf , xv, y).

Proof of GDF SR
i (xf , xv, y) ≤ GDF SR

o (xf , xv, y): Since ESR
G = GDFSR

o (xf ,xv ,y)

GDFSR
i (xf ,xv ,y)

≥ 1. Thus,

we have GDF SR
i (xf , xv, y) ≤ GDF SR

o (xf , xv, y).
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Proof of GDF SR
o (xf , xv, y) ≤ DF f

o (xf , y): Assume that (θ∗, ϕ∗) is the optimal solutions

of determining model ESR
G (xf , xv, y). Therefore, (θ∗, ϕ∗) is also a feasible solution of

determining model DF f
o (xf , y). Hence, we have DF f

o (xf , y) ≥ ϕ∗ = GDF SR
o (xf , xv, y).

(ii) Based on the part (i), we have DF f
o (xf , y) ≥ GDF SR

o (xf , xv, y). Hence, DFo(x,y)

DF f
o (xf ,y)

≤
DFo(x,y)

GDFSR
o (xf ,xv ,y)

. Thus, PCUo(x, x
f , y) ≤ GPCUo(x

v, xf , y).

(iii) Based on the part (i), we have DF SR
i (xf , xv, 0) ≤ GDF SR

i (xf , xv, y). Hence,
DFSR

i (x,xf ,y)

DFSR
i (xf ,xv ,0)

≥ DFSR
i (x,xf ,y)

GDFSR
i (xf ,xv ,y)

. Thus, PCUi(x
v, xf , y) ≥ GPCUi(x

v, xf , y).

(iv) The results of the numerical example show that

GPCU(x, xf , y)
>
=
<
GPCUo(x, x

f , y)
>
=
<
GPCUi(x, x

f , y).

(v) Since GPCU(x, xf , y) ≤ 1 and PCUi(x
v, xf , y) ≥ 1, therefore, GPCU(x, xf , y) ≤

PCUi(x
v, xf , y).

(vi) The results of the numerical example show that GPCU(x, xf , y) can be equal, bigger

or smaller than PCUo(x, x
f , y). To prove the other part, since GPCU(x, xf , y) ≤ 1 and

PCUo(x, x
f , y) ≤ 1, therefore, GPCU(x, xf , y)−1 ≥ PCUo(x, x

f , y).

Proof of Proposition 4.3:

Assume that (θ∗, ϕ∗) is an optimal solution of determining model DF f
o (xf , y). Suppose

that β∗ = DF f
o (xf , y). We have:

xv − β∗gvx = xv − β∗ (1− θ∗)
DF f

o (xf , y)
xv = θ∗xv,

and,

y + β∗gy = y + β∗
(ϕ∗ − 1)

DF f
o (xf , y)

y = ϕ∗y.

Since (xf , θ∗xv, ϕ∗y) ∈ T , therefore (xf , xv − β∗gvx, y+ β∗gy) ∈ T . Hence, β∗ = DF f
o (xf , y) is

a feasible solution of determining model ESR
D (xv, xf , y, gvx, gy). Thus, ESR

D (xv, xf , y, gvx, gy) ≥
DF f

o (xf , y). Suppose that β∗∗ = ESR
D (xv, xf , y, gvx, gy) > DF f

o (xf , y). Therefore,

xv − β∗∗gvx = xv − β∗∗ (1− θ∗)
DF f

o (xf , y)
xv = (1− β∗∗( (1− θ∗)

DF f
o (xf , y)

))xv < θ∗xv,

and

y + β∗∗gy = y + β∗∗
(ϕ∗ − 1)

DF f
o (xf , y)

y = (1 + β∗∗(
(ϕ∗ − 1)

DF f
o (xf , y)

))yo > ϕ∗y.
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Letting

θ̄ = (1− β∗∗( (1− θ∗)
DF f

o (xf , y)
)).

and

ϕ̄ = (1 + β∗∗(
(ϕ∗ − 1)

DF f
o (xf , y)

)),

Since (xf , xv−β∗∗gvx, y+β∗∗gy) ∈ T , we have (xf , θ̄xv, ϕ̄y) ∈ T . Therefore, (θ̄, ϕ̄) is a feasible

solution of determining model DF f
o (xf , y) such that ϕ̄ > ϕ∗, which is a contradiction. Thus

the proof is complete.

The proofs of Propositions 4.4 to 4.8 all have the same structure as that of Proposition

4.3. To save space, the are omitted.

B Computing Plant Capacity Notions

This appendix presents how the components of various capacity concepts can be estimated

in a convex non-parametric frontier framework assuming VRS. To specify the estimation

models, we first recall the notations introduced in this contribution. The vector of N inputs

(x ∈ RN
+ ) allows producing a vector of M outputs (y ∈ RM

+ ). The vector of inputs x can

be partitioned into a fixed (xf ) and variable part (xv) as x = (xf , xv). Assume that for

every observed production unit k under observation, (k = 1, . . . , K), both the input (xk)

and corresponding output vectors (yk) are known. The corresponding fixed and variable

input components are denoted by xfk and xvk, respectively. Finally, since non-parametric

frontier technologies are founded on activity analysis, we need a vector of activity variables

z = (z1, . . . , zK) indicating the intensity levels at which each of these K observed activities

is conducted.

The estimation of the plant and economic capacity components under convexity by using

non-parametric frontier methods implies solving the following series of linear programming

problems for each observation (xo, yo) ∈ {(xk, yk) | k = 1, . . . , K}.

The output-oriented radial technical efficiency measure DFo(x, y) defined in (2) is com-
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puted by solving the following linear program:

DFo(x, y) = max
ϕ,zk

ϕ

s.t
K∑
k=1

zkyk ≥ ϕyo,

K∑
k=1

zkxk ≤ xo,

K∑
k=1

zk = 1,

ϕ ≥ 0, zk ≥ 0, k = 1, . . . , K.

(33)

By decomposing inputs into their fixed and variable components and by using expression

(10) in Proposition 3.1, model (33) can be rewritten as follows:

DFo(x, y) = max
ϕ,θ,zk

ϕ

s.t
K∑
k=1

zkyk ≥ ϕyo,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zkx
v
k ≤ θxvo,

K∑
k=1

zk = 1,

θ ≤ 1, ϕ ≥ 1, zk ≥ 0, k = 1, . . . , K.

(34)

The short-run output-oriented radial technical efficiency measure DF f
o (xf , y) defined in

(3) is computed by solving the following linear program:

DF f
o (xf , y) = max

ϕ,zk
ϕ

s.t
K∑
k=1

zkyk ≥ ϕyo,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zk = 1,

ϕ ≥ 0, zk ≥ 0, k = 1, . . . , K.

(35)
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Based on expression (8) in Proposition 3.1, model (35) can be rewritten as follows:

DF f
o (xf , y) = max

ϕ,θ,zk
ϕ

s.t
K∑
k=1

zkyk ≥ ϕyo,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zkx
v
k ≤ θxvo,

K∑
k=1

zk = 1,

θ ≥ 0, ϕ ≥ 0, zk ≥ 0, k = 1, . . . , K.

(36)

The input-oriented radial technical efficiency measure DFi(x, y) defined in (1) is com-

puted by solving the following linear program:

DFi(x, y) = min
θ,zk

θ

s.t
K∑
k=1

zkyk ≥ yo,

K∑
k=1

zkxk ≤ θxo,

K∑
k=1

zk = 1,

θ ≥ 0, zk ≥ 0, k = 1, . . . , K.

(37)

The input efficiency measure DF SR
i (xf , xv, y) defined in (4) is computed by solving the

following linear program:

DF SR
i (xf , xv, y) = min

θ,zk
θ

s.t
K∑
k=1

zkyk ≥ yo,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zkx
v
k ≤ θxvo,

K∑
k=1

zk = 1,

θ ≥ 0, zk ≥ 0, k = 1, . . . , K.

(38)
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Based on expression (11) in Proposition 3.1, model (38) can be rewritten as follows:

DF SR
i (xf , xv, y) = min

ϕ,θ,zk
θ

s.t
K∑
k=1

zkyk ≥ ϕyo,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zkx
v
k ≤ θxvo,

K∑
k=1

zk = 1,

θ ≤ 1, ϕ ≥ 1, zk ≥ 0, k = 1, . . . , K.

(39)

The input-oriented short-run efficiency measure DF SR
i (xf , xv, 0) defined in (5) is com-

puted by solving the following linear program:

DF SR
i (xf , xv, 0) = min

θ,zk
θ

s.t
K∑
k=1

zkyk ≥ 0,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zkx
v
k ≤ θxvo,

K∑
k=1

zk = 1,

θ ≥ 0, zk ≥ 0, k = 1, . . . , K.

(40)

Based on expression (9) in Proposition 3.1, model (40) can be rewritten as follows:

DF SR
i (xf , xv, 0) = min

ϕ,θ,zk
θ

s.t
K∑
k=1

zkyk ≥ ϕyo,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zkx
v
k ≤ θxvo,

K∑
k=1

zk = 1,

θ ≥ 0, ϕ ≥ 0, zk ≥ 0, k = 1, . . . , K.

(41)
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The attainable output-oriented efficiency measure ADF f
o (xf , y, λ̄) at level λ̄ ∈ R+ defined

in (7) is computed by solving the following linear program:

ADF f
o (xf , y, λ̄) = max

θ,ϕ,zk
ϕ

s.t
K∑
k=1

zkyk ≥ ϕyo,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zkx
v
k ≤ θxvo,

K∑
k=1

zk = 1,

0 ≤ θ ≤ λ̄,

zk ≥ 0, k = 1, . . . , K.

(42)

The hyperbolic efficiency measure EH(x, y) defined in (12) is computed by solving the

following non-linear program:

EH(x, y) = max
θ,zk

θ

s.t
K∑
k=1

zkyk ≥ θyo,

K∑
k=1

zkxk ≤ 1
θ
xo,

K∑
k=1

zk = 1,

θ ≥ 0, zk ≥ 0, k = 1, . . . , K.

(43)

The generalized Farrell graph measure EFGL(x, y) defined in (13) is computed by solving

the following non-linear program:

EFGL(x, y) = max
θ,ϕ,zk

ϕ+θ
2

s.t
K∑
k=1

zkyk ≥ ϕyo,

K∑
k=1

zkxk ≤ 1
θ
xo,

K∑
k=1

zk = 1,

θ ≥ 1, ϕ ≥ 1, zk ≥ 0, k = 1, . . . , K.

(44)
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The generalized graph measure EG(x, y) defined in (14) is computed by solving the fol-

lowing non-linear program:

EG(x, y) = max
θ,ϕ,zk

ϕ
θ

s.t
K∑
k=1

zkyk ≥ ϕyo,

K∑
k=1

zkxk ≤ θxo,

K∑
k=1

zk = 1,

θ ≤ 1, ϕ ≥ 1, zk ≥ 0, k = 1, . . . , K.

(45)

The non-linear program (45) can be transformed into a linear program using the Charnes-

Cooper transformation as follows (see Charnes and Cooper (1962)):

EG(x, y) = max
θ,ϕ,t,zk

ϕ

s.t θ = 1,
K∑
k=1

zkyk ≥ ϕyo,

K∑
k=1

zkxk ≤ θxo,

K∑
k=1

zk = t,

θ ≤ t, ϕ ≥ t, t ≥ 0, zk ≥ 0, k = 1, . . . , K.

(46)

The sub-vector graph efficiency measure Ef
G(xf , xv, y) defined in (15) is computed by

solving the following non-linear program:

Ef
G(xf , xv, y) = max

θ,ϕ,zk

ϕ
θ

s.t
K∑
k=1

zkyk ≥ ϕyo,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zkx
v
k ≤ θxvo,

K∑
k=1

zk = 1,

θ ≤ 1, ϕ ≥ 1, zk ≥ 0, k = 1, . . . , K.

(47)
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The sub-vector graph efficiency measure ESR
G (xf , xv, y) defined in (16) is computed by

solving the following non-linear program:

ESR
G (xf , xv, y) = max

θ,ϕ,zk

ϕ
θ

s.t
K∑
k=1

zkyk ≥ ϕyo,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zkx
v
k ≤ θxvo,

K∑
k=1

zk = 1,

θ ≥ 0, ϕ ≥ 0, zk ≥ 0, k = 1, . . . , K.

(48)

Note that the non-linear programming problems (47) and (48) also can be transformed into

linear programs using the Charnes-Cooper transformation in a similar way as model (45).
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