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Abstract

There is a great deal of literature regarding use of non-geographically based
connectivity matrices or combinations of geographic and non-geographic
structures in spatial econometrics models. We explore alternative approaches
for constructing convex combinations of different types of dependence be-
tween observations. Pace and LeSage (2002) as well as Hazır et al. (2016)
use convex combinations of different connectivity matrices to form a single
weight matrix that can be used in conventional spatial regression estimation
and inference. An example for the case of two weight matrices, W1, W2

reflecting different types of dependence between a cross-section of regions,
firms, individuals etc., located in space would be: Wc = γ1W1 + (1− γ1)W2,
0 ≤ γ1 ≤ 1. The matrix Wc reflects a convex combination of the two weight
matrices, with the scalar parameter γ1 indicating the relative importance
assigned to each type of dependence. We explore issues that arise in pro-
ducing estimates and inferences from these more general cross-sectional re-
gression relationships in a Bayesian framework. We propose two procedures
to estimate such models and assess their finite sample properties through
Monte Carlo experiments. We illustrate our methodology in an application
to CEO salaries for a sample of nursing homes located in Texas. Two types
of weights are considered, one reflecting spatial proximity of nursing homes
and the other peer group proximity, which arise from the salary benchmark-
ing literature.
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benchmarking models, Markov Chain Monte Carlo estimation, Bayesian
model probabilities, convex combination.
JEL: : C11, C21, C51, M12, L84

1. Introduction

Spatial regression models typically rely on spatial proximity to specify
weight matrices, for example first-order neighbors (those with borders in
common) or some number (say m) of nearest neighboring regions, or points
(e.g., firms, consumers, houses) located in space. This approach has two
advantages: 1) geographical location of observations is objective and easy
to determine, and 2) weight matrices based on geographical space can be
viewed as fixed over time and in most cases exogenous.1 There has been
a great deal of criticism of weight matrices based solely on spatial loca-
tion of observations, (e.g., Corrado and Fingleton, 2012). This criticism in
part derives from application of spatial regression models to broader con-
texts involving interregional flows of: goods (e.g., trade), population (e.g.,
migration), knowledge (e.g., patent citations); student peer groups, social
networks, etc., where geographical location of observations does not seem
intuitively or theoretically appealing.

Further, early concerns of Fingleton (2003) regarding the theoretical
and empirical basis for assumptions about the spatial reach of externali-
ties, and methods for explicitly modeling knowledge spillovers between in-
teracting firms or modeling knowledge flows due to job switching in labor
market areas, etc. still remain largely unexplored. There are a limited num-
ber of studies where weight matrices reflecting connectivity of observations
have been motivated by underlying theoretical considerations. For example
Behrens et al. (2012) derive a quantity-based structural gravity equation
system where both trade flows and error terms are cross-sectionally corre-
lated based on population shares of regions in the sample, and Koch and
LeSage (2015) show that the multilateral resistance concept from trade the-
ory (Anderson and van Winkoop, 2003, 2004) can be viewed as a simulta-
neous autoregressive dependence structure involving gross domestic product
shares of the sample regions as well as other types of generalized distance
factors.

1There are cases where location of firms or consumers in space could result from an
endogenous sorting process or some other underlying economic mechanism.
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One response to dissatisfaction regarding use of connectivity structures
based solely on spatial location has been the introduction of simultaneous
autoregressive models that rely on more than one weight matrix (see La-
combe, 2004; Badinger and Egger, 2011; Lee and Liu, 2010; Elhorst et al.,
2012; Liu et al., 2014). In these models, different weight matrices are intro-
duced in an effort to capture different types of cross-sectional dependence
within the same spatial autoregressive specification. Specifically, multiple
spatial lags of the dependent variable vector y are introduced as right-hand
side variables in an effort to extend conventional spatial autoregressive mod-
els to include what have been labeled ‘higher-order’ terms, as shown in (1),
where L of such terms are introduced.

y =

(
L∑
`=1

ρ`W`

)
y +Xβ + ε (1)

In (1), y is an n × 1 vector of dependent variable outcomes, X is an
exogenous n × k explanatory variables matrix, with β the associated k × 1
parameters, ρ`, ` = 1, · · · , L are scalar dependence parameters measuring
the strength of each type of dependence modeled by the n× n connectivity
matrices W`, ` = 1, · · · , L. The n × 1 disturbance vector is assumed to
have independent error terms with zero mean and constant scalar variance
(σ2) across all n observations.

One example of a higher-order specification is Lacombe (2004), who
explored a county-level cross-sectional spatial relationship involving program
participation of state residents, where a spatial matrix W1 is used to identify
nearby counties located within the same state and a second spatial weight
matrix W2 captures the influence of nearby counties located in neighboring
states. Liu et al. (2014) in a model of social interaction that explores peer
effects rely on one weight matrix to capture local-average (social norm)
influences of peers and a second weight matrix for influences reflected by
local-aggregate peer effects (social multiplier). However, LeSage and Pace
(2011) point to a number of estimation and interpretive issues that arise for
models of the type in (1), and Elhorst et al. (2012) point out complications
that arise regarding the parameter space for the dependence parameters
ρ`, ` = 1, · · · , L.

Another thread in the literature is to simply replace the spatial weight
matrix with more appropriate types of connectivity structures, for exam-
ple weight matrices based on friendship ties. Patacchini and Zenou (2012)
analyze the role played by teenagers conformity to their peers’ behavior
in producing juvenile crime outcomes in a social networking application.
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In the area of international finance, connectivity matrices may reflect real
transmission channels for risk across countries, which might arise from trade
or financial ties between countries. Alternatively, information transmission
channels for risk might be reflected by financial market information that cap-
tures perceptions of market participates regarding own- and other-country
risks (see Debarsy et al., 2017, and references therein). This suggests weight
matrices based on trade, financial flows, or socio-economic similarities be-
tween countries.

A related literature is on methods for assessing different weight struc-
tures for their consistency with a specific economic relationship and set of
sample data. Since models based on alternative weight matrices are likely
to be non-nested, one approach in this literature uses the non-nested J test
developed by Davidson and MacKinnon (1981) extended to spatial regres-
sion models by Anselin (1988). The power of alternative predictions for
a host of spatial regression model specifications are explored in Kelejian
(2008) and Kelejian and Piras (2011). Burridge and Fingleton (2010) and
Burridge (2012) propose respectively to rely on bootstrap procedures for in-
ference on the J test and to use maximum likelihood estimation rather than
instrumental variables in the first step of the J test computation, within
the Kelejian (2008) framework. Liu et al. (2014) propose an extension of
the Kelejian (2008) J test to differentiate between the local-aggregate and
the local-average endogenous peer effects in an econometric network model
with network fixed effects. Debarsy and Ertur (2016) build on the J tests of
Kelejian (2008) and Kelejian and Piras (2011) to allow for heteroskedastic-
ity in a spatial autoregressive specification and further propose a procedure
based on Hagemann (2012) to circumvent the decision problem inherent to
non-nested models tests (the decision problem arises when non-nested tests
do not lead to a clear choice between competing models). Alternatively, Jin
and Lee (2013) consider a spatial model extension of the Cox test (Cox,
1961, 1962) for the case of non-nested models. In the context of determin-
ing the most relevant geographically based spatial weight matrix, Géniaux
and Martinetti (2017) suggest to use different distance kernels with a single
parameter h (representing the bandwidth or the number of neighbors, de-
pending on the kernel). Identification of the matrix W is then based on a
moment estimator that tries to minimize the residual sum of squares of the
model estimation with respect to W (h).

A Bayesian alternative to non-nested model tests is proposed by LeSage
and Pace (2009) in order to select the most appropriate spatial weight ma-
trix. In contrast to the J tests that rely on specific model estimates and their
associated predictions, the Bayesian approach to model comparison inte-
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grates over all model parameters to calculate the log-marginal likelihood and
associated model probabilities. This approach makes inference regarding the
best weight matrix unconditional on any particular set of estimates. Note
that parameter estimates based on models that rely on the wrong weight
matrix will be biased, making it desirable to draw model comparison con-
clusions that are unconditional on the parameter estimates. LeSage (2014,
2015), extends this approach to simultaneously calculate log-marginal likeli-
hoods and associated model probabilities for both cross-sectional and panel
data model specifications and weight matrices. Again, inferences drawn
based on posterior model probabilities are unconditional on parameter esti-
mates from the host of alternative models considered.

Finally, Harris et al. (2011) provide a wide ranging discussion of tech-
niques aimed at searching over alternative weight matrices for the best fit,
approaches to estimating the weight matrix using non-parametric methods,
correlation and iterative approaches, along with an illustration focused on
establishment level R&D in the UK. While noting approaches based on hy-
brid combinations, their focus is on finding a single most appropriate weight
matrix.

Our contribution to the spatial econometric literature regarding alterna-
tive weight matrices is to pursue an approach considered by Pace and LeSage
(2002) as well as in Hazır et al. (2016), that relies on convex combinations
of different connectivity matrices to form a single weight matrix. An ad-
vantage of this approach is that the resulting weight matrix can be used in
conventional spatial regression methods to produce estimates and inference.
This approach also avoids several issues raised in LeSage and Pace (2011)
regarding estimation and interpretation of higher-order models that include
spatial lags involving multiple different W matrices.

This convex combination approach proposes using Wc =
∑L

`=1 γ`W`,

with 0 ≤ γ` ≤ 1, ` = 1, · · · , L and
∑L

`=1 γ` = 1, in a standard spatial
econometrics specification. The matrix Wc reflects cross-section dependence
specified using a convex combination of L different types of connectivity be-
tween observations.2 The scalar parameters γ` indicate the relative impor-
tance assigned to each type of dependence in the cross-sectional dependence
scheme. When each W`, ` = 1, · · · , L, is row-normalized, then Wc obeys

2In this paper, we do not address the potential endogeneity issue that may arise when
weight matrices are not based on geographic proximity. The matrices entering the convex
combination are thus assumed to be exogenous. For standard SAR cross-section mod-
els, Qu and Lee (2015) develop an estimator robust to endogeneity of the connectivity
structure. However, in our context, we leave this question for further research.
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the conventional row-normalization, which allows use of conventional spa-
tial regression model specifications and estimation methods.3

In Section 2, we explore two alternative estimation strategies for deter-
mining estimates of γ`, ` = 1, . . . , L in this convex combination approach,
one that calculates Bayesian posterior model probabilities for a discrete set
of M models based on a grid of values for γ` ∈ [0, 1], ` = 1, · · · , L, and
another based on Bayesian MCMC estimation of the posterior distributions
for the parameters γ`. Both the posterior distributions and model probabil-
ities provide a formal basis for inference regarding the relative importance
assigned to each of the connectivity structures W`.

Guidance for successful use of these models by practitioners is provided
in Section 3 of the paper. Section 4 presents results from Monte Carlo exper-
iments, where we show that the Bayesian MCMC approach to estimating
γ`, ` = 1, · · · , L provides superior coverage intervals for the underlying
model parameters and more reliable scalar summary measures of direct and
indirect effects used to draw inferences regarding the impact of a change in
the explanatory variables on the outcome variable. An applied illustration
is the subject of Section 5.

In the remainder of this paper we consider a host of spatial specifications
that can be used in conjunction with the convex combination of weights that
we have labeled Wc. These models are shown in expressions (2) to (6). The
only difference with respect to traditional spatial econometrics specifications
comes from the use of a connectivity matrix Wc which represents a global
measure of cross-sectional dependence, combining different specifications re-
garding the nature of interactions between observations. In traditional spa-
tial models used in the literature, the connectivity matrix models a single
type of cross-sectional dependence that has been labeled spatial dependence.

3Alternative types of normalization for connectivity matrices W` are possible (see Kele-
jian and Prucha, 2010). However, with the exception of special cases, normalization of
each connectivity matrix W` by one of the matrix norms proposed in Kelejian and Prucha
(2010) does not result in a normalized convex combination matrix Wc.
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SAR : y = ρWcy +Xβ + ε (2)

SLX : y = Xβ +WcXθ + ε (3)

SDM : y = ρWcy +Xβ +WcXθ + ε (4)

SDEM : y = Xβ +WcXθ + (IN − λWc)
−1u. (5)

ε, u ∼ N(0, σ2IN2)

Wc =
L∑
`=1

γ`W` (6)

s.t. 0 ≤ γ` ≤ 1, ` = 1, · · · , L and
L∑
`=1

γ` = 1

2. Convex combinations of connectivity matrices

Pace and LeSage (2002) as well as Hazır et al. (2016) use convex combi-
nations of different weight matrices to form a single connectivity matrix that
can be used in conventional spatial regression estimation. One advantage of
this approach is that estimation procedures for traditional spatial regression
models can be used to produce estimates and inference for models (2) to
(6).

Hazır et al. (2016) study the effect of R&D collaboration networks on
regional knowledge creation relying on a SDM specification. Their collabora-
tion network is constructed from a convex combination of three connectivity
matrices: Wc = γ1W1 + γ2W2 + γ3W3.

They rely on estimated log-likelihood values to determine an estimate of
the true values of γ`, ` = 1, 2, 3, which we designate as (γ̄`), which is then
used to form W c =

∑3
`=1 γ̄`W`. Their SDM specification using W c is then

estimated by maximum likelihood.
In this paper, we consider two Bayesian procedures that can be used

to estimate the parameters γ`. The first, labeled the grid approach, is pre-
sented in Section 2.1, which is similar to the approach used in Hazır et al.
(2016). We show that it can suffer from a drawback associated with ignor-
ing uncertainty regarding the underlying distribution of γ`. Two possible
consequences of this are biases in the scalar summary measures of impacts
proposed by LeSage and Pace (2009) and incorrect coverage intervals.

Our second procedure, labeled the MCMC approach is presented in Sec-
tion 2.2. This procedure accounts for uncertainty regarding an underlying
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distribution for the parameters γ`. In our Monte Carlo experiments, we
find that this approach results in centered estimators of the parameters and
scalar summary measures as well as superior empirical coverage intervals
especially in the case of the scalar summary measures for indirect (spillover)
impacts.

2.1. The grid approach

Consider the following SAR model where ρ0, β0, σ0 and γ`,0, ` = 1, . . . , L
denotes the true values of the parameters:4

y = ρ0Wcy +Xβ0 + ε ε ∼ N(0, σ2
0In)

Wc =
L∑
`=1

γ`,0W` (7)

s.t. 0 ≤ γ`,0 ≤ 1, ` = 1, · · · , L and

L∑
`=1

γ`,0 = 1

Let γ0 = (γ1,0, . . . , γL,0)′, be the vector containing all parameters of the
convex combination. The first approach relies on Bayesian posterior model
probabilities that can be calculated for a discrete set of M models based
on a grid of values for each γ`. Each model m = 1, . . . ,M is condi-
tional on a particular value for each γ`, denoted γm` . For each Wc(γ

m) =∑L
`=1 γ

m
` W`, m = 1, . . . ,M , we can calculate the log-marginal likelihood of

model (7), which is used to compute posterior model probabilities, defined
as: Prob(Mm|Wc(γ) = Wc(γ

m)). The notation Prob(Mm|Wc(γ) = Wc(γ
m))

indicates that the posterior model probabilities are conditional on a par-
ticular convex combination matrix Wc, itself determined by the values of
the parameter vector γm = [γm1 , . . . , γ

m
L ], but not on the model parameters

(e.g., ρ, β, σ2). The process of calculating log-marginal likelihoods integrates
out the model parameters, so the posterior model probabilities are valid for
any parameter values of ρ, β, σ2 (in the appropriate parameter space) (see
LeSage and Pace, 2009, Chapter 6).

An estimator of the true value γ0 that we designate as γ̄, can be deter-
mined using the highest posterior model probability from the set of proba-
bilities (each conditional on a particular convex combination of matrices).5

4We use the SAR model to illustrate issues here, with other cross-sectional dependence
model specifications discussed in Appendix A.

5In this section, we rely on the notation γ̄ rather than on γ̂ to designate an estimator
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Formally, Wc(γ̄) =
∑L

`=1 γ̄`W`, where γ̄ = maxMm=1Prob(Mm|Wc(γ) =
Wc(γ

m)). In the sequel, we refer to this approach as the grid approach
to modeling convex combinations of different types of cross-sectional depen-
dence.

The grid approach should in many cases produce a result equivalent to
that of Hazır et al. (2016) who used the maximum of the (conditional) like-
lihood function across a grid of different values for γ`, ` = 1, . . . , L to deter-
mine γ̄. Formally, in the Hazır et al. (2016) paper, γ̄ = maxMm=1LogL(Mm|Wc(γ) =
Wc(γ

m)), where LogL(Mm|Wc(γ) = Wc(γ
m)) denotes the log likelihood

function value associated with γm.
A possible advantage of the Bayesian grid approach set forth above over

that of Hazır et al. (2016) is that the posterior model probabilities are un-
conditional on the estimated values of the model parameters (e.g., ρ, β, σ2).
They however remain conditional on the particular Wc(γ

m) matrix used
(and therefore conditional on specific values of the convex combination in
the grid of values used). Note that in the approach of Hazır et al. (2016), es-
timates of the SAR parameters ρm, βm, σ2,m used to evaluate the likelihood
for values of γm,m = 1, . . . ,M will equal true values for only one of the m
values from the set of M different values considered. This assumes that we
view the correct model as one based on a single value of γ0, then estimated
parameters ρ̂, β̂, σ̂2 from models that condition on values of γm 6= γ0 might
lead to incorrect likelihood function values used to determine the estimate
γ̄.

It is important to note that we are unable to carry out a formal decom-
position of the partial derivative impacts arising from the different types of
cross-sectional dependence being modeled. Consider the partial derivative
with respect to the rth regressor:

∂E(y)/∂X ′r = (In − ρ̂Wc(γ̄))−1Inβ̂r (8)

Wc(γ̄) =
L∑
`=1

γ̄`W` (9)

∂E(y)/∂X ′r =

(
In − ρ̂

(
L∑
`=1

γ̄`W`

))−1

Inβ̂r (10)

The inverse from the partial derivative expression will involve cross-products

of γ since, as discussed later, the grid approach ignores the uncertainty embedded in the
estimator.
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of the various W` matrices, powers of these, as well as the underlying param-
eter estimates: ρ̂, γ̄, β̂. However, we do have estimates of γ`,0, ` = 1, . . . , L
that allow us to draw conclusions about the relative importance of each type
of connectivity embodied in each of the matrices W`. To illustrate, consider
a convex combination of two matrices: Wc = γ1W1 + γ2W2. Due to the
convex combination constraint (the sum of the parameters must equal one),
we can rewrite this convex combination as Wc = γ1W1 + (1 − γ1)W2. A
value γ̄1 = 0.5 would imply that both types of connectivity are of equal
importance, whereas an estimate γ̄1 = 0.9 tells us that the weight matrix
W1 is much more important than W2.

Because the model partial derivatives in (8) reflect an n × n matrix,
LeSage and Pace (2009) propose a scalar summary measure of the direct
effects based on an average of the main diagonal elements of the n×n matrix
in (8), and a scalar summary of the cumulative indirect effects based on an
average of the sum of the off-diagonal elements from each row i = 1, . . . , n
of the matrix in (8). These scalar summaries represent an average of the
own-partial derivatives (direct effects = ∂yi/∂x

r
i ) and an average of the

cumulative sum of cross-partial derivatives (indirect effects = ∂yj/∂x
r
i ).

Some situations that might arise when using the grid approach are dis-
cussed here. For the sake of clarity, we consider again the convex combi-
nation Wc = γ1W1 + (1 − γ1)W2. Suppose that using a 0.1 grid over [0, 1]
for γ1, we find posterior model probabilities that point to: Prob(Mm|γm1 =
0.3) = 0.49 and Prob(Mo|γo1 = 0.4) = 0.51.6 The question that arises
is: should we produce estimates and inferences based on the model with
posterior probability equal to 0.51 and ignore estimates and inferences aris-
ing from the model based on posterior probability equal to 0.49? A so-
lution to this is to define a finer grid, but the question can still arise, if
Prob(Mm|γm1 = 0.42) = 0.49 and Prob(Mo|γo1 = 0.43) = 0.51, which model
should be used to produce estimates and inferences? This type of result is
not likely to be a problem in applied practice because model probabilities
like these simply indicate that estimates and inferences from models based
on either Prob(Mm|γm1 = 0.42) = 0.49 or Prob(Mo|γo1 = 0.43) = 0.51 should
be very similar.

A related point is that use of a finer grid of values over [0, 1] for γ1 will
likely reduce posterior model probabilities for individual γm1 values. This
would occur in situations where support for more than a single γm1 arises,

6We use the notation: Prob(Mm|γm
1 = 0.4) as shorthand for: Prob(Mm|Wc(γ1) =

Wc(γ
m
1 ), γm

1 = 0.4).
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since posterior model probabilities are spread over the grid of values. One
might see a situation where the highest two model probabilities take the
form: Prob(Mm|γm1 = 0.42) = 0.12 and Prob(Mo|γo1 = 0.43) = 0.13. The
decision rule for selecting γ1 would still be selection of γ̄1 = 0.43, since this
is the highest model probability.

Another drawback to selecting a single value of γ̄ is that uncertainty
regarding the parameter γ is ignored. Indeed, we first select a single value
for the parameter vector γ which maximizes the posterior probability and
then consider this value as the “true” one when subsequently estimating
the spatial regression specification (model (7) here). Consequently, we ig-
nore uncertainty regarding this set of parameters. A further point is that
uncertainty regarding γ can have consequences due to the likely correlation
between this parameter vector and other model parameters.7 When the
posterior probability associated with the preferred value, namely γ̄, is very
high, the level of uncertainty regarding the value of the parameters γ is very
low and ignoring it should have a minor impact on the overall quality of
inference. However the situation is different if posterior probabilities associ-
ated with other values of γ` 6= γ̄ are not close to zero. In this case, we face
a high level of uncertainty with respect to γ̄.

Since the partial derivatives are non-linear functions of the underlying
SAR parameter estimates γ̄, ρ̂, β̂ as shown in (10), ignoring uncertainty in
γ and fixing it at a single estimated value γ̄ might produce poor coverage
intervals for the scalar summary direct and indirect effects estimates. By
coverage intervals we mean the interval (say α/2% and (1−α/2)% quantiles)
determined by our estimates that should encompass the true parameter val-
ues (1−α)% of the time. Inference in cross-sectional dependence regression
models centers on the direct and indirect effects estimates, for which we
require not only point estimates but also measures of dispersion on which
inferences about statistical significance of these effects are based.

In section 4 we describe Monte Carlo experiments that demonstrate how
taking the grid approach to estimating a convex combination cross-sectional
dependence model can in fact produce coverage intervals that are too small.
An example of an interval that is too small would be when the estimated
2.5% and 97.5% intervals contain the true parameter only 80% of the time,
rather than the expected 95% of the time.

7The variance-covariance matrix of the model parameters thus has a conditional inter-
pretation.
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2.2. The Bayesian MCMC approach
If there is uncertainty regarding the parameter vector γ on which the grid

approach conditions its estimates, the Bayesian solution to this problem is
to integrate out these parameters when producing estimates and inferences.
Integrating out a model parameter makes posterior inferences unconditional
on this parameter. By this, we mean that estimates and inferences are valid
for all values taken by the parameter over the range of its parameter space.

Our model probabilities are conditional on the (estimated) weight ma-
trix W c, which, as already noted, depends on exogenous fixed information
contained in the matrices W`, ` = 1, . . . , L as well as signal-to-noise in the
sample data that gives rise to uncertainty about the parameter vector γ.
We could attempt numerical integration of these parameters over the fea-
sible interval (0 ≤ γ` ≤ 1), ` = 1, . . . , L. However, this would require use
of multivariate numerical integration procedures to integrate all model pa-
rameters ρ, γ, β, σ2. For the case where we condition on a single convex
combination matrix Wc (defined by the values of γ`), it is possible to an-
alytically integrate out the parameters σ2 and β, and then rely on simple
univariate numerical integration over the parameter ρ to calculate posterior
model probabilities. This approach treats the model as conditional on a
given matrix Wc(γ̄), which allows analytical integration over the parameters
β, σ2, and the ensuing univariate numerical integration problem involving
ρ (see LeSage and Pace, 2009, chapter 5). Full treatment of a model that
is unconditional on the matrix Wc(γ) does not allow analytical integration
over the parameters β, σ2, leading to the need for multivariate numerical in-
tegration over β, σ2, ρ as well as the parameters in the vector γ. This would
be a very computationally challenging problem to solve.

An alternative that we adopt here is to integrate out the parameters γ
over the feasible interval (0 ≤ γ` ≤ 1) (with

∑L
`=1 γ` = 1) using Bayesian

Markov Chain Monte Carlo (MCMC) estimation of the model. This requires
that we sample from the conditional distributions of the vector γ|β, ρ, σ2.
This sampling occurs in the broader context of sampling for the other pa-
rameters β, ρ, σ2 based on their conditional distributions as well. We will
refer to this method for estimating convex combinations of cross-sectional
dependence models as the MCMC approach. Since this approach incor-
porates uncertainty regarding all model parameters including those in the
vector γ, we would expect that posterior estimates and inferences based on
the MCMC approach should produce correct coverage intervals that conform
to the desired size (e.g., 95% intervals).

Bayesian estimation typically relies on prior distributions assigned for
the model parameters. However, when applying our MCMC approach to
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estimating parameters β, ρ, σ2, γ, we rely on uninformative priors. This in-
volves assigning normal priors for the parameters β in conjunction with
Gamma priors for σ2. Setting the prior variances for the parameters β to
very large values essentially eliminates the influence of any prior informa-
tion on the posterior model estimates for the parameters β. There are also
settings that can be used to make the Gamma priors for σ2 have little in-
fluence on the posterior estimates for this parameter. For the parameters
ρ and γ`, ` = 1, . . . , L, we rely on proper uniform priors over the stable
parameter spaces for these parameters, which also has little to no impact on
the posterior estimates for these parameters.

In the next section we set forth conditional distributions required to
produce MCMC estimates for the SAR regression model specification. Con-
ditional distributions needed to carry out MCMC estimation of the SLX,
SDM, SDEM specifications are presented in Appendix A

2.3. Conditional distributions for the convex combination SAR model

Conditional distributions for the model parameters required to imple-
ment MCMC estimation of the SAR spatial regression specifications in (7)
are set forth here.

We rely on a normal prior for β:

π(β) ∼ N(β̄, Σ̄β) (11)

where β̄ is a k × 1 vector of prior means and Σ̄β is a k × k prior variance-
covariance matrix.8

We employ a uniform prior for ρ since this scalar dependence parameter
is constrained to lie in the open interval (−1, 1).9 The constraint is imposed
during MCMC estimation using griddy Gibbs sampling that integrates over
this interval (see LeSage and Pace, 2009, chapter 5). Similarly, we impose
the closed interval [0, 1] for γ`, ` = 1, . . . , L during MCMC estimation, us-
ing griddy Gibbs sampling that integrates over this interval. To impose∑L

`=1 γ` = 1, we set γL = (1−
∑L−1

`=1 γ`) during MCMC sampling.

8We do not separately consider the intercept vector and associated parameter for no-
tational simplicity, assuming this is part of the matrix X and associated parameter vector
β.

9A value of -1 is often used in practice as this ensure the matrix inverse: (In− ρWc)
−1

exists. This has the advantage that we do not have to calculate the minimum eigenvalue
of Wc which changes as a function of the values taken by γ.
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For the parameter σ2, we use an inverse Gamma(ā, b̄) distribution shown
in (12). We note that as values of ā, b̄→ 0, this prior distribution becomes
uninformative, which might be important in applied practice since there
would be little basis for assigning prior values for the parameter σ2.

π(σ2) =
b̄ā

Γ(ā)
(σ2)−(ā+1)exp(−b̄/σ2) (12)

σ2 > 0, ā, b̄ > 0

As is traditional in the literature, we assume that priors for the param-
eters β, ρ, γ, σ2 are independent.

The conditional posterior for β (given ρ, γ, σ2) takes the form in (13).
We note that if we wish to eliminate the influence of any prior information
on the posterior estimates, we can impose Σ̄β = ∞ by modifying (14) to
take the form: β̃ = (X ′X)−1X ′(y − ρWc(γ)y).

p(β|ρ, γ, σ2) ∼ N(β̃, Σ̃) (13)

β̃ = (X ′X + σ2Σ̄−1
β )−1(X ′(y − ρWc(γ)y) + σ2Σ̄−1

β β̄) (14)

Σ̃ = σ2(X ′X + σ2Σ̄−1
β )−1

The conditional posterior for σ2 (given β, ρ, γ) takes the form in (15),
when we set the prior parameters ā = b̄ = 0.

p(σ2|β, ρ, γ) ∝ (σ2)−(N
2

)exp

(
− 1

2σ2
(y − ρWc(γ)y −Xβ)′(y − ρWc(γ)y −Xβ)

)
(15)

∼ IG(ã, b̃)

ã = N/2

b̃ = (y − ρWc(γ)y −Xβ)′(y − ρWc(γ)y −Xβ)/2

The (log) conditional posterior for ρ (given β, γ, σ2) takes the form in
(16), where we use ln|In − ρWc(γ)| to show that the log-determinant term
in this model depends on the vector γ. For example, considering a convex
combination of 3 matrices, we need to calculate: ln|In − ρWc(γ)| = ln|In −
ρ(γ1W1 + γ2W2 + γ3W3)| with γ3 = 1− γ1 − γ2.

ln p(ρ|β, γ, σ2) ∝ −N
2

lnσ2 + ln|In − ρWc(γ)|

− 1

2σ2
([In − ρWc(γ)]y −Xβ)′ ([In − ρWc(γ)]y −Xβ)(16)
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This distribution does not reflect a known form as in the case of the con-
ditional distributions for β, σ2. We sample the parameter ρ from this (log)
conditional distribution using a griddy Gibbs sampling approach described
in detail in LeSage and Pace (2009, chapter 5). This involves univariate
integration of the (log) conditional distribution over a grid of values for the
parameter ρ, with a draw-by-inversion from the profile of the cumulative
distribution, with details provided in Appendix B.1.

Depending on the number of matrices constituting the convex combina-
tion (two or more), two methods are proposed to sample the vector γ from
its (log) conditional posterior distribution (given β, ρ, σ2), which takes the
form of an unknown distribution. For the two matrices case, we only need
to sample γ1 since γ2 = 1 − γ1. As for the sampling of ρ, we can rely on a
griddy Gibbs approach, where we perform univariate integration of the (log)
conditional posterior expression over the parameter γ1, using the approach
described in detail in Appendix B.2.

If more than two matrices are included in the convex combination, we
propose to use a reversible-jump procedure to obtain proposal values for
the block of the L γ parameters, in conjunction with a Metropolis-Hastings
accept/reject on the proposed block. The details of this method can also be
found in Appendix B.2.

2.4. The MCMC sampler

MCMC sampling involves evaluating each of these conditional distribu-
tions in sequence a large number of times, say T with some initial number
S excluded from the sample of MCMC draws, leaving us with T − S draws
for each model parameter. Posterior means and measures of dispersion are
based on the T − S retained MCMC draws.

Sampling begins with arbitrary values for the parameters β, ρ, γ, σ2 for
the SAR model, arbitrary values for β, θ, ρ, γ, σ2 in the case of the SDM
specification, β, θ, λ, γ, σ2 for the SDEM, and β, θ, γ, σ2 for the SLX.

One thing to note about MCMC estimation of the convex combination
spatial model versus the conventional single connectivity matrix model is
that we need to evaluate the log-determinant term ln|In − ρWc(γ)| that
appears in the conditional distribution for ρ and γ on every pass through
the MCMC sampler. This is not the case in the conventional single fixed
weight matrix W where this term can be evaluated over a grid of values
for the parameter (−1 < ρ < 1) once before carry out MCMC iterations.10

10Alternatively, if one relies on the computation of eigenvalues of the connectivity matrix
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We avoid the need to evaluate the log-determinant term on every MCMC
pass by carrying out these calculations once over a grid of values for ρ and
γ`, ` = 1, . . . , L prior to MCMC sampling and storing the scalar results in an
np×ng×L matrix, where np is the size of the grid of values used for ρ, ng is
the size of the grid of values for γ and L is the size of the parameter vector γ.
During MCMC sampling, we lookup the appropriate log-determinant value
given the current values of the parameters ρ and γ.11

We need to sample updated values for each of the parameters conditional
on values of all others. One pass through the sampler involves producing
draws for values of all parameters, and T of such passes are carried out, with
draws from some initial number of passes S discarded to allow the sampler
to “burn-in”. Posterior means, standard deviations, and other summary
statistics for the parameter distributions are analyzed using the sample of
T − S retained draws.

For example, if (T − S) equals 1000, we use the 1000 MCMC draws
to calculate the posterior mean, standard deviation, percentiles, etc. for
each model parameter. This reflects an empirical posterior distribution for
the parameters. In the case of the non-linear scalar summary direct and
indirect effects for the SAR specification, we use the retained 1,000 draws for
the parameters γ, ρ, β (that we represent as: γd, ρd, βd, d = 1, . . . , 1000) to
evaluate the n×nmatrix partial derivative expression in (17) 1000 times. For
each of these evaluations, we calculate the scalar summary measures of direct
effects (using the average of the main diagonal elements of the n×n matrix),
and the cumulative scalar summary measure of indirect effects (using the
average of the sum of off-diagonal elements from the n×n matrix). Empirical
measures of dispersion can be constructed from the standard deviation or
percentiles of the 1000 estimates of direct and indirect effects. For the dth

draw, equation (17) shows the matrix partial derivative for the rth regressor:

[
∂E(y)

∂X ′r

]d
= (In − ρd(Wc(γ

d))−1Inβ
d
r , d = 1, . . . , 1000 (17)

Wc(γ
d) =

L∑
`=1

γd`W`

to calculate the log-determinant, we only need to compute them once (see Ord, 1975).
11A grid based on 0.01 values for ρ and γ`, l = 1, . . . , L can be used resulting in 199

values for −1 < ρ < 1 and 101 values for 0 ≤ γ` ≤ 1 in this case. Spline interpolation is
used during the MCMC sampling to produce a finer grid of log-determinant values.
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3. Guidance for use of convex combinations of connectivity struc-
tures

There are some points to consider when implementing the convex combi-
nation of W matrices models. We first examine the distinction between con-
nectivity matrices and regressors and interpretative issues that arise when a
functional relationship exists between these. We then discuss the impact of
correlation between connectivity matrices and tests that have been proposed
to assess this. Our last point concerns issues pertaining to inference at the
boundary of the parameter space for γ.

3.1. Relation between Wc and the X−variables

One point to consider when using these models is that matrices W`,
` = 1, . . . , L should not be based on variables that reflect the explanatory
variables. The spirit of SAR, SDM, SLX and SDEM regression models is
that a (causal) theoretical relationship exists between the dependent vari-
able outcomes (for instance observations on regions or points in space) in the
vector y and the explanatory variables matrix X describing characteristics of
these regions or points in space. Cross-sectional dependence between obser-
vations is determined by factors (say Z) that are different in nature from the
explanatory variables, since they relate to channels of interaction, transmis-
sion or more generally connectivity between observations. The relationship
between explanatory variables and outcomes are frequently prescribed by
economic theory, which allows us to formulate causal relations. Spatial re-
gression models aim to assess the impact of variation in direct (own-region
characteristics) on own-region outcomes, as well as indirect effects arising
from changes in own-region characteristics on other-region outcomes. In the
absence of cross-sectional dependence, indirect (spillover) effects are zero,
by definition, while direct effects are equal for all observations.

If theory suggests a relationship between explanatory variables and the
dependent variable, we should not entertain using these variables to con-
struct dependence structures. This is because the connectivity matrix re-
flects the dependence mechanism by which regional outcomes are correlated,
which captures a different aspect of variation in the dependent variable vec-
tor y than that modeled using the explanatory variables matrix X.

The objective of including a connectivity matrix Wc (or simply W for
standard models) is to account for the structure of simultaneous cross-
sectional dependence. This dimension of the economic phenomenon under
study will determine how changes in own-region characteristics impact de-
pendent variable outcomes in other regions, when we assess the effect of a
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change in elements of xi on outcomes for observation yi as well as other
observations yj , j 6= i. An implication is that the information content of the
connectivity matrix and explanatory variables are different, with the weight
matrix determining how own- and other-region outcomes are impacted by
cross-sectional dependence, whereas explanatory variables reflect an under-
lying relation between own-region characteristics and own-region outcomes.

Turning to specification of cross-sectional dependence matrices W`, ` =
1, . . . , L, Corrado and Fingleton (2012) contend that theory should be useful
in determining spatial (and other) weight matrices used in our cross-sectional
dependence regression models. However, past applied econometric work has
ignored spatial and more general types of cross-sectional dependence, treat-
ing cross-sectional observations as independent. This has resulted in a lack
of theoretical attention paid to the issue of cross-sectional dependence in
spatial econometrics. One exception is peer group dependence in the social
network literature where the connectivity matrix may arise from social norm
effects (local-average models) or social multiplier effects (local-aggregate ef-
fects) depending on its construction (see, among others Ghiglino and Goyal,
2010; Patacchini and Zenou, 2012; Liu et al., 2014). A second exception is in
the area of international trade where shares of world income or population
of individual countries provide a theoretical basis for dependence (Behrens
et al., 2012; Koch and LeSage, 2015).

An important requirement for interpretation of partial derivatives in
spatial autoregressive models using the approach of LeSage and Pace (2009)
is that we avoid situations where the matrix Wc depends on explanatory
variables, say the rth, which we indicate formally as: Wc = f(Xr). A
partial derivative invokes the notion of a ceteris paribus change in the rth

explanatory variable impacting the outcomes vector y, reflected through the
(fixed) matrix inverse: (In − ρWc)

−1. If Wc = f(Xr), we cannot draw
upon the ceteris paribus assumption of LeSage and Pace (2009) because the
matrix inverse is no longer fixed.

To properly interpret a model where Wc = f(Xr), we would need to
calculate how changes in Xr impact the matrix Wc, and consider the total
derivative impact arising from a change in Xr. Lee and Yu (2012) consider
this situation and derive the associated matrix of partial derivatives, shown
in (18) for the ith observation.
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∂E(y)

∂xi,r
= (In − ρWc(Xr))

−1
.i β1 +Ai (18)

Ai =
∂[In − ρWc(Xr)

−1]

∂xi,r
(Xβ)

In (18), the expression Ai consists of an n×n matrix, ∂[(In−ρWc)
−1]/∂xi,r

showing how changes in xi,r impact this matrix inverse, and of the n × 1
vector Xβ, making Ai an n× 1 vector.

The n×n matrix of partial derivatives used to produce direct and indirect
effects in the SAR model for all n observations now takes the form in (19).

∂E(y)

∂Xr
= (In − ρWc(Xr))

−1βr + [A1 A2 . . . An] (19)

Calculation of the direct effects would be done by averaging over main di-
agonal elements and indirect effects by averaging the cumulative sum of off-
diagonal elements from each row. However, to implement this in practice
would require that we calculate the vectors Ai, i = 1, . . . , n, which requires
knowledge of the functional relationship between Xr and the matrix Wc(Xr),
which is unlikely to be known in practice.

By way of conclusion, we can avoid difficulties in applied use of convex
combinations of weights if we make an effort to avoid situations where vari-
ables used for construction of weight matrices (which we label Z) are not
confounded with explanatory variables in the matrix X.

3.2. Structures of dependence reflected by weight matrices

A related point is that the matrices W`, ` = 1, . . . , L should reflect dif-
ferent types of dependence structures, that convey independent information.
Intuitively, if W1 and W2 are very similar, then a model that attempts to
model these very similar types of dependence using a convex combination
based on an estimate γ̂ is not likely to succeed. To see this, consider again
the SAR model with Wc = γ1W1 + (1 − γ1)W2. When W1 = W2, the
scalar parameter γ1 based on values of γ1 = 0, 0.5, 1 would all produce the
same likelihood function values, indicating a lack of identification for this
parameter.

LeSage and Pace (2014) propose scalar summaries of similarity between
spatial lags that result from use of two weight matrices based on the correla-
tion between the two n×1 vectors, W1u and W2u for normalized Wi, i = 1, 2
using a single n × 1 vector of independent identically distributed standard
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normal deviates u. Ideally, we would like to have a low correlation between
W1u and W2u. This measure does not compute the correlation between W1

and W2 on an element-by-element basis, but rather compares, for each ob-
servation, the weighted sum (assuming weight matrices are row-normalized)
of elements from the vector u obtained with the two matrices. When matri-
ces are different, we expect the weighted sums to be relatively uncorrelated.
Of course, in the case of more than two weight matrices, we can examine
the correlation matrix for the vectors: (W1u, W2u, . . . , WLu).

3.3. Inference at the boundary of the parameter space for γ

Another issue that arises is that of appropriate inference when one or
several elements of the γ vector lie near (or on) the boundary of their pa-
rameter space, i.e., 0 or 1. Producing point estimates and measures of
dispersion (that are needed for inference) when parameters are close to the
boundaries (say 0.95) introduces a host of issues related to estimation and
inference at the boundary of the parameter space.12 To avoid these issues
one can use the grid approach in a first step to determine if values of γ`,
` = 1, . . . , L are near the 0 or 1 boundary values. In practice, if the grid
approach points to values of γ` near zero, this suggests the associated W`

matrix does not play an important role in the overall connectivity scheme,
represented by Wc. This first step would convey substantial information
regarding which matrices are relevant channels from which cross-sectional
dependence arises.13 In contrast, if an element of γ is close to 1, say γk,
the convex combination approach is not very useful since most information
regarding cross-sectional dependence is conveyed by Wk. Once all irrelevant
connectivity matrices have been eliminated (i.e those with an associated
parameters close to zero), we can use the MCMC approach to estimate the
remaining γ as well as the model parameters and draw associated inferences.

4. Monte Carlo experiments

In this section we compare estimates obtained from the grid and MCMC
approaches using traditional performance measures of bias and precision as

12Essentially, the distribution of the parameters of interest will be truncated at the
boundary value, so estimates of dispersion/variance need to be adjusted to account for
truncation.

13We note however that we cannot perform inference on elements of γ with this ap-
proach.
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well as coverage intervals. Special consideration is given to estimator per-
formance in situations where the parameter γ1 of the convex combination
is close to or at the boundary of the [0, 1] permissable interval for this pa-
rameter. For these experiments, we consider two sample sizes: n = 200 and
n = 300.

The DGP we consider is presented in equation (20),

y = ρWcy + β0ιn + β1x1 + ε

y = (In − ρWc)
−1(β0ιn + β1x1 + ε)

Wc = γ1W1 + (1− γ1)W2

(20)

with y, the (n × 1) vector of the dependent variable, ιn the unit vector of
dimension n×1 and x1 is drawn from a centered Normal distribution with a
standard deviation of 1.5. The parameter of the constant term is set to 0.5
while β1 = 1. The connectivity matrix Wc is constructed as a convex combi-
nation of two matrices, W1 and W2. Two cases are considered regarding the
relation between W1 and W2. We first assume independence between them
and construct W1 using a binary five nearest neighbors definition, while W2

is based on the (binary) eight nearest neighbors. To ensure independence,
we use two independent random vectors of latitude-longitude coordinates to
construct the matrices. In addition, we examine performance of the two es-
timation approaches when W1 and W2 are correlated. Correlation between
the two W−matrices was produced by using the same set of latitudes and
longitudes to construct W1 and W2, with the matrix W1 based on 5 nearest
neighbors and the matrix W2 constructed using the 4th to 8th nearest neigh-
bors. This produces two weight matrices that share common neighbors in
40% of the row elements (e.g., the 4th and 5th nearest neighbors). According
to the scalar summaries of similarity between spatial lags described above,
the correlation between W1u and W2u is 0.354, where u is a n × 1 vector
drawn from a standard normal distribution.

The error term ε is assumed Normally distributed, centered around zero
and with a variance σ2I set so that the signal to noise ratio (SNR) of the
model is kept constant (see Pace et al., 2012). If we let A = (I−ρWc)

−1Xβ,
X = [ιn, x1], β = [β0, β1]′ and B = (I − ρWc)

−1, the SNR is defined as
follows:

SNR =
A′A

A′A+ σ2tr(B′B)

As such, we know that SNR will lie between 0 and 1. Setting SNR to a
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fixed value, we can solve for σ2:

σ2 =
A′A(1− SNR)

tr(B′B)(SNR)

Two different values for SNR were considered, 0.3 and 0.7, reflecting weak
and strong fit of the model to the generated sample data. The parameter ρ
takes on three different values: 0.3, 0.5, 0.7, to cover weak, moderate and
strong cross-sectional dependence. Finally, we consider the following values
for γ1, our parameter of interest: 0, 0.1, 0.5, 0.9, 1. As such, we cover values
in the interior of the parameter space, as well as values close to the bound-
aries and at the upper and lower boundaries of the [0, 1] parameter space.
In these simulations, the vector x1 is fixed across the 1000 replications. For
each MCMC replication, we produce 2000 draws for each parameter and
disregard the 1000 first draws as burn-in. For the grid approach, we com-
pute the log-marginal likelihood and associated probabilities for values of
γ1 ∈ [0, 1] using an increment of 0.05 (21 different values).

Tables 1 to 4 report the results for n = 200.14 Table 1 summarizes the
results for independent W1 and W2 matrices and a SNR of 0.3 while Table
2 results are based on a SNR of 0.7. Table 3 presents the results for a SNR
of 0.3 and correlated connectivity matrices. Finally, Table 4 shows results
for correlated W1 and W2 with SNR = 0.7. All tables contain a left panel
that summarizes results based on the grid estimation approach while the
right panel shows outcomes for the MCMC estimation approach.

For each of the estimation approaches, we consider several statistical
measures of the performance for the parameters γ1, ρ, β1, as well as the
average direct effect of x1 (dir1), and average indirect effect (ind1). We
calculated two measures of bias, one labeled Biasav represents the differ-
ence between the average value over all replications of the estimate and the
true value of the parameter. A second bias measure, labeled Biasme, was
calculated using the median value over all replications of the estimate in-
stead of the average. We also calculated two measures of dispersion, the
root mean square error (RMSE) and median absolute deviation (MAD).
Finally, we study the coverage interval (cover.) of the estimates, defined as
the 2.5% and 97.5% quantiles, which should encompass the true parameter
values 95% of the time. Specifically, this involved a binary variable that
takes the value 1 if the true parameter is part of the coverage interval and 0

14The results for n = 300 are available upon request to the authors. The conclusions
for this larger sample size corroborate those obtained for n = 200, but with improved
performance.
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otherwise, for each replication. Reported coverage statistics are an average
of the binary variable over all replications which indicates the percentage
of outcomes when the true parameter value lies within the 95% coverage
interval.

To compute the average direct and indirect effect of x1, we rely on ex-
pressions (21) to (23).

∂y

∂x′1
= S1(Wc) = (In − ρWc)

−1β1 (21)

We then compute the direct and indirect values as follows:

dir1 =
1

n
tr[S1(Wc)] (22)

ind1 =
1

n
ι′n [S1(Wc)−Diag(S1(Wc))] ιn (23)

where tr(.) is the trace operator and Diag(A) is a diagonal matrix containing
the diagonal elements of the matrix A.

The discussion on the Monte Carlo (MC) results turns first to measures
of bias and dispersion for the two estimation procedures, and then presents
results pertaining to coverage intervals. The MC results in Table 1 are
for the case of low SNR and independent connectivity matrices. According
to the two bias statistics used, the estimator of γ1 obtained by the grid
approach does not seem to be affected, when the true value is close or at
the boundary of its parameter space. Indeed, when γ1 = 0 and ρ = 0.5,
Biasav and Biasme for γ1 are quite small. The same is true when ρ = 0.7.
However, we note that the bias for γ1 (measured by Biasav) is higher in
the presence of weak cross-sectional dependence while the statistic Biasme
seems less affected. Further, we note that when γ1 is on the [0, 1] boundaries
of the parameter space, the estimator of γ1 obtained by the grid approach
is less biased than for the MCMC approach. In the latter approach, we
rely on a draw for the parameter γ1 using inversion, based on the integrated
(log) pdf (probability density function) of the conditional distribution for
this parameter. Given the truncation of the conditional distribution at the
[0, 1] boundaries, this approach does not appear to work well to produce
an unbiased posterior mean estimate. However, as soon as the value of
γ1 departs from the boundaries of its parameter space, for instance, γ1 =
0.1, 0.9, estimates based on the MCMC approach result in more acceptable
bias levels (Biasav = −0.047 for γ1 = 0.9 and ρ = 0.7). Despite this, we
find more biased estimates than those resulting from the grid estimation
procedure. Turning to the estimates of precision, the MCMC approach is
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more efficient than the grid in most cases, and precision estimates based on
MAD statistic are systematically lower than those based on RMSE.

Turning attention to behavior of estimates for the other parameters of
the model, we see that for all values of γ1, the MCMC approach provides less
biased and more efficient estimates than the grid approach. This is especially
true regarding indirect effects. For instance, in Table 1 when γ1 = 0.5 and
ρ = 0.7, the Biasav statistic for the grid approach is 22.275 while it is only
of -0.301 for the MCMC procedure. This result also holds for the direct
effect, with a smaller discrepancy in outcomes. These differences are likely
a result of the fact that the MCMC estimation approach integrates out the
parameter γ1 while the grid estimation procedure treats this parameter as
fixed. The Biasme statistic appears to produce better results regarding
indirect effects, for both approaches, but the MCMC approach still clearly
dominates the grid procedure. Dispersion statistics for indirect effects may
take on very large values in the grid approach, as indicated by the RMSE
statistic. By construction, this result is partly driven by bias of the two
estimators, but the MAD statistic suggests a much higher dispersion for
the grid approach than for the MCMC procedure. Considering γ̄1 as the
true value in the grid approach (and thus ignoring uncertainty regarding
this parameter) has consequences for estimation of the direct and indirect
effects, which represent the focus of inference in spatial regression models.

Ignoring uncertainty in the estimation of γ1 also has some consequence
for accuracy of inferences regarding the parameters. In the Monte Carlo
experiments, we use the coverage interval to explore this issue. The last
columns in the left and right panels of Table 1 report the proportion of
the true values lying in the 95% interval constructed from the posterior
distribution of each parameter, which should equal 0.95. Coverage results for
the MCMC approach are good, even for the low SNR (0.3) in this Table, and
the relatively small sample size. Indeed, except for the extreme cases where
γ1 is at the boundaries of the parameter space, we observe for γ1, ρ, β1, dir1

coverage intervals close to 95%, while coverage is sometimes smaller for
indirect effects. The MCMC approach, by accounting for the uncertainty
in the estimation of γ1, provides accurate coverage intervals. In contrast,
coverage intervals for the grid approach depart from 95%, especially for the
parameter ρ and the average indirect effects, and to a lesser extent for the
average direct effect. However, the coverage interval for β1 seems unaffected
and lies near the correct 95% level. For instance, when γ1 = 0.9 and ρ = 0.7,
coverage intervals for ρ, β1, dir1 and ind1 equal 53.1%, 93.2%, 86.8% and
56.6% respectively, lower than the expected 95%. We note that since γ̄1

is treated as fixed by the grid estimation approach, we cannot calculate a
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coverage interval for this parameter.
Table 2 summarizes results when the signal to noise ratio equals 0.7, and

for independent W1 and W2. We first observe that when the data contains
more information regarding the dependent variable, bias and dispersion de-
crease. For the grid approach, the Biasav statistic for γ1 is much lower,
especially for weak cross-sectional dependence. For instance, when γ1 is set
to 0 and ρ = 0.3, we observe a Biasav statistic of 0.099, compared to 0.168 in
Table 1. Biases for the model parameters are also lower, despite some high
values (Biasav = 13.136 for the indirect effects when γ1 = 0.5 and ρ = 0.7).
They nevertheless improve relative to the low signal to noise ratio as we
would expect. The picture is the same for the MCMC approach. Lower
biases and better precision for the model parameters. Also, as in Table 1,
we observe a bias decrease for γ1 when cross-sectional dependence increases.
For instance, considering γ1 = 0.1, the estimator bias when ρ = 0.3, 0.5, 0.7
is respectively 0.164, 0.052 and 0.009. Even though the coverage intervals
improve for the grid approach, they nevertheless remain far from the correct
95% levels, while coverage results from the MCMC estimation procedure re-
main close to the correct levels.

Tables 3 and 4 present Monte Carlo results for the case where W1 and
W2 are correlated, with Table 3 summarizing outcomes for a low signal to
noise ratio and Table 4 reflecting the signal to noise ratio set to 0.7. In
Table 3, we observe larger biases (no matter the statistic used) for γ1, as
would be expected. Indeed, as the information content of the two weight
matrices overlap, uncertainty regarding the true value of γ1 increases, lead-
ing to less accurate estimates of this parameter by both methods. Again,
the MCMC approach results in lower bias for all model parameters than the
grid approach (based on both Biasav or Biasme), and calculated measures
of dispersion are generally smaller. Coverage intervals are also adversely
impacted by the correlation between the two weight matrices, with the im-
pact less for the MCMC approach (the coverage intervals for ρ and indirect
effects varies between 83 and 95 percent).

Table 4 presents results from an experiment where the signal to noise
ratio equals 0.7. By comparison with results from Table 3, we see smaller
biased for all parameter estimates and less dispersion around the true values.
Coverage intervals are higher for the grid approach, but, with the exception
of β1, these remain far from the correct 95% level. For the MCMC approach,
we observe a degradation in accuracy of the coverage interval for indirect
effects, which ranges between 86 and 96 percent. Comparing these results
to those in Table 2, we see that correlation between W1 and W2 diminishes
performance of the estimates for γ1, both in terms of bias and precision. In
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contrast, estimation performance of the other model parameters is similar
to that for the case of no correlation between the weight matrices.

Table 1: n = 200, Signal to-noise ratio = 0.3, independent W1 and W2

Grid Approach MCMC Approach
Param. True Biasav Biasme RMSE MAD Cover. Biasav Biasme RMSE MAD Cover.
γ1 0.000 0.168 0.050 0.301 0.050 - 0.304 0.293 0.330 0.103 0.000
ρ 0.300 0.102 0.149 0.274 0.120 0.724 -0.051 -0.043 0.160 0.109 0.939
β1 1.000 -0.008 -0.010 0.120 0.082 0.947 0.006 0.001 0.118 0.083 0.951
dir1 1.012 0.021 0.021 0.125 0.085 0.951 0.006 0.002 0.119 0.084 0.952
ind1 0.417 1.214 0.573 2.762 0.519 0.735 0.028 -0.024 0.320 0.199 0.940
γ1 0.000 0.060 0.000 0.122 0.000 - 0.144 0.123 0.162 0.037 0.000
ρ 0.500 0.180 0.200 0.227 0.075 0.600 -0.010 0.001 0.114 0.071 0.955
β1 1.000 -0.014 -0.017 0.134 0.094 0.936 0.009 0.002 0.126 0.088 0.953
dir1 1.039 0.071 0.069 0.172 0.103 0.935 0.006 -0.000 0.130 0.091 0.962
ind1 0.961 5.036 2.517 9.402 1.824 0.633 0.212 0.118 0.586 0.300 0.961
γ1 0.000 0.030 0.000 0.060 0.000 - 0.078 0.068 0.086 0.019 0.000
ρ 0.700 0.167 0.180 0.177 0.035 0.370 -0.002 0.005 0.074 0.050 0.971
β1 1.000 -0.019 -0.020 0.146 0.096 0.945 0.012 0.005 0.143 0.100 0.950
dir1 1.105 0.258 0.233 0.360 0.160 0.905 0.003 -0.001 0.156 0.110 0.962
ind1 2.228 25.284 17.725 36.333 10.776 0.435 0.712 0.439 1.497 0.688 0.975
γ1 0.100 0.125 0.050 0.298 0.150 - 0.240 0.241 0.270 0.099 0.978
ρ 0.300 0.073 0.126 0.273 0.129 0.762 -0.068 -0.066 0.163 0.105 0.935
β1 1.000 -0.004 0.000 0.120 0.084 0.952 0.006 0.001 0.117 0.082 0.953
dir1 1.009 0.022 0.026 0.125 0.086 0.954 0.006 0.002 0.118 0.083 0.953
ind1 0.419 1.169 0.482 2.950 0.507 0.769 -0.011 -0.065 0.307 0.186 0.943
γ1 0.100 0.008 -0.050 0.129 0.050 - 0.095 0.071 0.134 0.055 0.988
ρ 0.500 0.152 0.168 0.210 0.092 0.708 -0.050 -0.041 0.132 0.077 0.957
β1 1.000 -0.013 -0.014 0.127 0.084 0.949 0.007 0.002 0.126 0.087 0.951
dir1 1.031 0.062 0.054 0.161 0.098 0.950 0.004 -0.001 0.129 0.091 0.954
ind1 0.969 5.547 1.937 11.069 1.587 0.735 0.052 -0.046 0.530 0.292 0.959
γ1 0.100 -0.021 -0.050 0.085 0.050 - 0.025 0.009 0.063 0.032 0.994
ρ 0.700 0.139 0.153 0.158 0.047 0.626 -0.054 -0.048 0.105 0.058 0.961
β1 1.000 -0.020 -0.022 0.155 0.108 0.925 0.011 0.006 0.145 0.101 0.951
dir1 1.079 0.180 0.172 0.280 0.145 0.929 0.003 -0.002 0.155 0.109 0.961
ind1 2.255 20.578 13.626 29.148 9.782 0.670 0.176 -0.140 1.328 0.626 0.963
γ1 0.500 -0.014 -0.025 0.281 0.175 - -0.013 -0.018 0.119 0.069 0.986
ρ 0.300 0.061 0.087 0.255 0.135 0.827 -0.088 -0.088 0.162 0.091 0.941
β1 1.000 -0.002 0.000 0.115 0.076 0.954 0.005 0.002 0.117 0.082 0.954
dir1 1.007 0.021 0.025 0.119 0.075 0.963 0.007 0.004 0.118 0.083 0.953
ind1 0.422 1.303 0.358 3.315 0.475 0.831 -0.060 -0.123 0.289 0.148 0.941
γ1 0.500 0.011 0.000 0.204 0.100 - 0.002 -0.001 0.139 0.098 0.965
ρ 0.500 0.117 0.136 0.214 0.115 0.800 -0.118 -0.117 0.176 0.085 0.897
β1 1.000 -0.010 -0.008 0.127 0.084 0.940 0.007 0.004 0.126 0.089 0.952
dir1 1.021 0.050 0.050 0.157 0.094 0.954 0.005 0.002 0.128 0.091 0.952
ind1 0.979 6.835 2.523 13.122 2.585 0.804 -0.155 -0.293 0.565 0.256 0.905
γ1 0.500 0.017 0.000 0.142 0.100 - 0.007 0.004 0.128 0.089 0.940
ρ 0.700 0.104 0.135 0.152 0.058 0.803 -0.140 -0.135 0.187 0.087 0.840
β1 1.000 -0.012 -0.009 0.147 0.098 0.954 0.012 0.007 0.148 0.103 0.951
dir1 1.049 0.128 0.110 0.237 0.131 0.960 0.003 -0.001 0.155 0.111 0.953
ind1 2.285 22.275 17.227 30.494 11.705 0.838 -0.301 -0.742 1.547 0.609 0.849
γ1 0.900 -0.107 0.000 0.281 0.100 - -0.246 -0.233 0.277 0.095 0.976
ρ 0.300 0.116 0.144 0.264 0.106 0.725 -0.030 -0.018 0.142 0.088 0.955
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Table 1 – continued from previous page
Grid Approach MCMC Approach

Param. True Biasav Biasme RMSE MAD Cover. Biasav Biasme RMSE MAD Cover.
β1 1.000 -0.014 -0.011 0.118 0.076 0.947 0.007 0.005 0.117 0.082 0.957
dir1 1.014 0.016 0.020 0.121 0.081 0.957 0.006 0.004 0.119 0.084 0.955
ind1 0.415 1.202 0.458 3.757 0.392 0.731 0.056 0.015 0.308 0.177 0.959
γ1 0.900 -0.001 0.050 0.127 0.050 - -0.107 -0.091 0.133 0.047 0.981
ρ 0.500 0.157 0.161 0.205 0.079 0.604 -0.011 -0.008 0.099 0.063 0.973
β1 1.000 -0.014 -0.017 0.127 0.087 0.941 0.010 0.006 0.124 0.087 0.957
dir1 1.046 0.070 0.065 0.160 0.095 0.933 0.005 0.002 0.130 0.092 0.957
ind1 0.954 4.001 1.168 8.917 0.869 0.656 0.199 0.074 0.605 0.270 0.972
γ1 0.900 0.020 0.050 0.089 0.050 - -0.047 -0.037 0.072 0.032 0.991
ρ 0.700 0.144 0.149 0.161 0.050 0.464 -0.020 -0.021 0.076 0.047 0.979
β1 1.000 -0.027 -0.028 0.139 0.098 0.949 0.013 0.008 0.139 0.096 0.958
dir1 1.118 0.222 0.212 0.316 0.146 0.910 0.001 -0.003 0.156 0.109 0.958
ind1 2.215 18.653 6.748 32.115 5.481 0.536 0.621 0.198 1.754 0.638 0.980
γ1 1.000 -0.142 0.000 0.264 0.000 - -0.306 -0.284 0.331 0.086 0.000
ρ 0.300 0.142 0.168 0.254 0.092 0.649 -0.005 0.011 0.138 0.085 0.945
β1 1.000 -0.004 0.000 0.115 0.077 0.945 0.007 0.003 0.117 0.082 0.956
dir1 1.017 0.031 0.031 0.126 0.079 0.944 0.006 0.004 0.120 0.084 0.956
ind1 0.411 1.133 0.526 3.345 0.379 0.686 0.109 0.074 0.329 0.182 0.948
γ1 1.000 -0.056 0.000 0.109 0.000 - -0.164 -0.150 0.175 0.035 0.000
ρ 0.500 0.192 0.199 0.220 0.066 0.432 0.027 0.031 0.092 0.056 0.952
β1 1.000 -0.025 -0.019 0.129 0.080 0.937 0.010 0.006 0.124 0.087 0.956
dir1 1.059 0.082 0.073 0.172 0.100 0.931 0.003 0.001 0.131 0.092 0.955
ind1 0.941 3.819 1.565 8.271 0.965 0.478 0.367 0.242 0.687 0.291 0.957
γ1 1.000 -0.032 0.000 0.062 0.000 - -0.103 -0.096 0.110 0.021 0.000
ρ 0.700 0.169 0.171 0.176 0.034 0.181 0.031 0.034 0.067 0.039 0.943
β1 1.000 -0.043 -0.043 0.139 0.089 0.943 0.014 0.010 0.135 0.094 0.956
dir1 1.164 0.287 0.257 0.375 0.153 0.871 0.001 -0.004 0.159 0.113 0.957
ind1 2.170 16.784 7.084 29.167 4.331 0.275 1.288 0.904 2.103 0.722 0.956

Table 2: n = 200, Signal to-noise ratio = 0.7, Independent W1 and W2

Grid Approach MCMC Approach
Param. True Biasav Biasme RMSE MAD Cover. Biasav Biasme RMSE MAD Cover.
γ1 0.000 0.099 0.000 0.203 0.000 - 0.219 0.190 0.244 0.068 0.000
ρ 0.300 0.067 0.076 0.156 0.075 0.821 -0.009 -0.000 0.112 0.072 0.944
β1 1.000 -0.003 -0.001 0.051 0.035 0.950 0.002 0.000 0.051 0.035 0.949
dir1 1.012 0.007 0.007 0.052 0.036 0.952 0.002 0.001 0.051 0.036 0.954
ind1 0.417 0.271 0.215 0.472 0.196 0.821 0.055 0.037 0.235 0.143 0.951
γ1 0.000 0.039 0.000 0.078 0.000 - 0.106 0.094 0.117 0.026 0.000
ρ 0.500 0.106 0.107 0.137 0.055 0.721 0.011 0.015 0.080 0.051 0.962
β1 1.000 -0.010 -0.012 0.056 0.038 0.940 0.004 0.002 0.054 0.037 0.951
dir1 1.039 0.020 0.020 0.063 0.040 0.948 0.002 0.000 0.056 0.039 0.964
ind1 0.961 0.917 0.629 1.642 0.394 0.730 0.187 0.136 0.417 0.225 0.968
γ1 0.000 0.026 0.000 0.052 0.000 - 0.063 0.056 0.070 0.015 0.000
ρ 0.700 0.110 0.113 0.127 0.041 0.545 0.009 0.014 0.059 0.038 0.971
β1 1.000 -0.016 -0.017 0.063 0.040 0.935 0.006 0.004 0.062 0.042 0.947
dir1 1.105 0.082 0.075 0.125 0.059 0.906 0.001 0.000 0.069 0.046 0.967
ind1 2.228 5.899 2.789 10.891 1.681 0.574 0.568 0.410 1.104 0.516 0.975
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Table 2 – continued from previous page
Grid Approach MCMC Approach

Param. True Biasav Biasme RMSE MAD Cover. Biasav Biasme RMSE MAD Cover.
γ1 0.100 0.044 -0.000 0.190 0.100 - 0.164 0.142 0.201 0.085 0.977
ρ 0.300 0.056 0.064 0.146 0.085 0.866 -0.029 -0.025 0.116 0.077 0.938
β1 1.000 -0.007 -0.005 0.051 0.035 0.957 0.002 0.000 0.050 0.035 0.949
dir1 1.009 0.003 0.004 0.050 0.035 0.965 0.003 0.000 0.051 0.036 0.955
ind1 0.419 0.255 0.177 0.509 0.212 0.868 0.012 -0.012 0.226 0.145 0.942
γ1 0.100 -0.004 -0.050 0.102 0.050 - 0.052 0.035 0.087 0.040 0.986
ρ 0.500 0.076 0.077 0.131 0.066 0.826 -0.023 -0.020 0.091 0.057 0.966
β1 1.000 -0.008 -0.008 0.053 0.035 0.950 0.004 0.002 0.054 0.037 0.950
dir1 1.031 0.015 0.014 0.057 0.037 0.955 0.002 0.001 0.055 0.039 0.963
ind1 0.969 0.913 0.458 2.193 0.420 0.828 0.052 -0.016 0.383 0.212 0.972
γ1 0.100 -0.018 -0.000 0.078 0.050 - 0.009 -0.002 0.051 0.028 0.990
ρ 0.700 0.084 0.089 0.118 0.060 0.724 -0.037 -0.032 0.080 0.046 0.973
β1 1.000 -0.015 -0.018 0.064 0.041 0.951 0.005 0.003 0.063 0.043 0.946
dir1 1.079 0.067 0.059 0.112 0.055 0.944 0.000 -0.001 0.068 0.047 0.964
ind1 2.255 7.097 2.628 13.289 2.389 0.744 0.107 -0.117 1.020 0.474 0.978
γ1 0.500 0.030 0.000 0.246 0.150 - -0.006 -0.009 0.135 0.094 0.978
ρ 0.300 0.038 0.042 0.151 0.097 0.896 -0.061 -0.062 0.124 0.068 0.940
β1 1.000 -0.005 -0.006 0.053 0.033 0.937 0.003 0.001 0.050 0.035 0.957
dir1 1.007 0.003 0.003 0.053 0.035 0.937 0.003 0.002 0.051 0.036 0.954
ind1 0.422 0.238 0.143 0.527 0.248 0.890 -0.051 -0.091 0.223 0.120 0.940
γ1 0.500 0.007 0.000 0.154 0.100 - 0.005 0.007 0.132 0.091 0.951
ρ 0.500 0.065 0.074 0.150 0.092 0.850 -0.080 -0.085 0.134 0.070 0.912
β1 1.000 -0.004 -0.003 0.055 0.034 0.932 0.004 0.003 0.054 0.038 0.955
dir1 1.021 0.015 0.014 0.059 0.035 0.947 0.003 0.001 0.055 0.039 0.957
ind1 0.979 1.415 0.581 3.115 0.663 0.853 -0.114 -0.219 0.447 0.229 0.911
γ1 0.500 0.012 0.000 0.100 0.050 - 0.004 0.001 0.106 0.068 0.932
ρ 0.700 0.090 0.106 0.131 0.059 0.803 -0.097 -0.099 0.144 0.070 0.876
β1 1.000 -0.007 -0.007 0.066 0.044 0.928 0.007 0.005 0.064 0.044 0.957
dir1 1.049 0.081 0.071 0.134 0.064 0.929 0.001 -0.001 0.067 0.047 0.963
ind1 2.285 13.136 8.185 20.529 6.430 0.803 -0.175 -0.540 1.365 0.556 0.888
γ1 0.900 -0.042 0.050 0.178 0.050 - -0.172 -0.152 0.202 0.068 0.976
ρ 0.300 0.070 0.066 0.135 0.068 0.840 0.002 0.006 0.096 0.060 0.955
β1 1.000 -0.003 -0.005 0.051 0.034 0.942 0.003 0.002 0.050 0.035 0.960
dir1 1.014 0.008 0.006 0.052 0.034 0.938 0.003 0.002 0.051 0.036 0.956
ind1 0.415 0.255 0.171 0.472 0.166 0.837 0.067 0.043 0.223 0.124 0.958
γ1 0.900 -0.000 0.050 0.111 0.050 - -0.075 -0.063 0.099 0.039 0.980
ρ 0.500 0.083 0.079 0.128 0.064 0.755 0.004 0.003 0.075 0.048 0.967
β1 1.000 -0.008 -0.009 0.054 0.036 0.940 0.005 0.003 0.053 0.037 0.960
dir1 1.046 0.021 0.023 0.060 0.039 0.953 0.002 0.001 0.056 0.039 0.958
ind1 0.954 0.779 0.409 1.645 0.376 0.759 0.162 0.080 0.429 0.204 0.971
γ1 0.900 0.020 0.050 0.083 0.050 - -0.036 -0.026 0.062 0.031 0.985
ρ 0.700 0.086 0.082 0.114 0.056 0.627 -0.007 -0.008 0.062 0.038 0.976
β1 1.000 -0.021 -0.020 0.067 0.041 0.917 0.007 0.004 0.060 0.041 0.960
dir1 1.118 0.078 0.072 0.123 0.054 0.907 -0.000 -0.001 0.069 0.048 0.961
ind1 2.215 5.452 1.479 12.742 1.334 0.646 0.530 0.180 1.422 0.493 0.979
γ1 1.000 -0.084 0.000 0.159 0.000 - -0.225 -0.204 0.243 0.054 0.000
ρ 0.300 0.084 0.085 0.136 0.063 0.783 0.027 0.032 0.094 0.055 0.939
β1 1.000 -0.010 -0.009 0.050 0.034 0.955 0.003 0.002 0.050 0.035 0.959
dir1 1.017 0.003 0.002 0.050 0.034 0.964 0.003 0.002 0.051 0.036 0.954
ind1 0.411 0.270 0.209 0.439 0.159 0.785 0.119 0.096 0.241 0.124 0.939
γ1 1.000 -0.042 0.000 0.083 0.000 - -0.134 -0.124 0.143 0.028 0.000
ρ 0.500 0.106 0.102 0.133 0.049 0.624 0.039 0.039 0.077 0.042 0.928
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Table 2 – continued from previous page
Grid Approach MCMC Approach

Param. True Biasav Biasme RMSE MAD Cover. Biasav Biasme RMSE MAD Cover.
β1 1.000 -0.013 -0.016 0.057 0.038 0.932 0.005 0.003 0.053 0.037 0.959
dir1 1.059 0.025 0.022 0.065 0.042 0.942 0.002 0.000 0.057 0.040 0.959
ind1 0.941 0.800 0.519 1.533 0.285 0.633 0.316 0.248 0.505 0.212 0.931
γ1 1.000 -0.027 0.000 0.052 0.000 - -0.090 -0.083 0.095 0.018 0.000
ρ 0.700 0.103 0.101 0.115 0.032 0.401 0.040 0.040 0.062 0.029 0.922
β1 1.000 -0.022 -0.023 0.065 0.042 0.923 0.008 0.005 0.058 0.040 0.961
dir1 1.164 0.088 0.083 0.123 0.052 0.878 0.001 0.000 0.071 0.050 0.968
ind1 2.170 3.412 1.730 8.258 0.788 0.425 1.095 0.818 1.651 0.529 0.915

Table 3: n = 200, Signal to-noise ratio = 0.3, correlated W1 and W2

Grid Approach MCMC Approach
Param. True Biasav Biasme RMSE MAD Cover. Biasav Biasme RMSE MAD Cover.
γ1 0.000 0.210 0.150 0.330 0.150 - 0.378 0.381 0.393 0.082 0.000
ρ 0.300 0.110 0.131 0.197 0.094 0.793 -0.071 -0.065 0.129 0.071 0.909
β1 1.000 -0.011 -0.013 0.119 0.082 0.942 0.006 -0.000 0.118 0.084 0.955
dir1 1.012 0.014 0.010 0.123 0.083 0.953 0.004 0.001 0.120 0.085 0.956
ind1 0.417 0.537 0.413 1.013 0.318 0.807 -0.075 -0.092 0.208 0.119 0.910
γ1 0.000 0.142 0.100 0.204 0.100 - 0.258 0.244 0.276 0.067 0.000
ρ 0.500 0.154 0.170 0.187 0.070 0.651 -0.079 -0.071 0.124 0.064 0.877
β1 1.000 -0.020 -0.017 0.128 0.085 0.949 0.007 0.001 0.127 0.090 0.959
dir1 1.039 0.052 0.053 0.153 0.098 0.956 -0.001 -0.004 0.132 0.095 0.956
ind1 0.961 2.287 1.440 3.744 0.962 0.701 -0.159 -0.197 0.358 0.200 0.882
γ1 0.000 0.144 0.100 0.190 0.100 - 0.196 0.184 0.211 0.053 0.000
ρ 0.700 0.152 0.162 0.163 0.033 0.455 -0.076 -0.066 0.110 0.055 0.832
β1 1.000 -0.016 -0.014 0.145 0.097 0.952 0.011 0.005 0.149 0.106 0.961
dir1 1.100 0.241 0.224 0.340 0.144 0.917 -0.008 -0.011 0.163 0.117 0.954
ind1 2.233 16.383 11.138 22.837 6.572 0.535 -0.388 -0.467 0.789 0.444 0.848
γ1 0.100 0.142 0.100 0.293 0.200 - 0.303 0.306 0.322 0.077 0.961
ρ 0.300 0.109 0.124 0.188 0.096 0.800 -0.071 -0.067 0.129 0.070 0.907
β1 1.000 -0.012 -0.017 0.122 0.080 0.939 0.005 0.000 0.118 0.083 0.959
dir1 1.011 0.013 0.010 0.125 0.084 0.948 0.004 -0.000 0.119 0.085 0.958
ind1 0.417 0.488 0.385 0.789 0.314 0.819 -0.076 -0.093 0.208 0.119 0.912
γ1 0.100 0.116 0.100 0.214 0.150 - 0.205 0.194 0.233 0.080 0.949
ρ 0.500 0.152 0.166 0.187 0.069 0.651 -0.082 -0.074 0.127 0.065 0.873
β1 1.000 -0.012 -0.012 0.128 0.086 0.948 0.008 0.004 0.126 0.089 0.960
dir1 1.038 0.062 0.059 0.156 0.099 0.946 0.001 -0.002 0.131 0.094 0.957
ind1 0.962 2.210 1.480 3.463 0.946 0.691 -0.169 -0.210 0.363 0.204 0.877
γ1 0.100 0.120 0.100 0.180 0.100 - 0.150 0.140 0.178 0.068 0.924
ρ 0.700 0.147 0.159 0.160 0.036 0.465 -0.077 -0.068 0.112 0.055 0.834
β1 1.000 -0.029 -0.031 0.152 0.098 0.944 0.011 0.006 0.148 0.104 0.961
dir1 1.099 0.217 0.200 0.322 0.149 0.918 -0.006 -0.010 0.162 0.117 0.953
ind1 2.234 14.988 11.187 21.037 6.680 0.551 -0.397 -0.469 0.793 0.444 0.840
γ1 0.500 0.034 0.050 0.300 0.200 - 0.015 0.009 0.115 0.075 0.998
ρ 0.300 0.097 0.112 0.182 0.095 0.802 -0.066 -0.061 0.124 0.069 0.912
β1 1.000 -0.013 -0.011 0.121 0.081 0.936 0.005 0.002 0.118 0.084 0.959
dir1 1.012 0.013 0.014 0.123 0.082 0.956 0.005 0.002 0.119 0.085 0.955
ind1 0.417 0.452 0.332 0.884 0.301 0.827 -0.068 -0.084 0.205 0.119 0.916
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Table 3 – continued from previous page
Grid Approach MCMC Approach

Param. True Biasav Biasme RMSE MAD Cover. Biasav Biasme RMSE MAD Cover.
γ1 0.500 0.041 0.050 0.197 0.100 - 0.036 0.042 0.140 0.104 0.984
ρ 0.500 0.151 0.166 0.183 0.066 0.652 -0.074 -0.067 0.121 0.063 0.881
β1 1.000 -0.013 -0.012 0.126 0.083 0.951 0.008 0.005 0.125 0.088 0.960
dir1 1.041 0.068 0.066 0.157 0.094 0.941 0.003 -0.001 0.130 0.093 0.955
ind1 0.959 1.901 1.317 2.877 0.777 0.699 -0.149 -0.189 0.354 0.208 0.881
γ1 0.500 0.048 0.050 0.145 0.100 - 0.045 0.048 0.128 0.089 0.970
ρ 0.700 0.145 0.157 0.158 0.036 0.440 -0.064 -0.055 0.100 0.050 0.854
β1 1.000 -0.027 -0.031 0.148 0.101 0.940 0.011 0.007 0.142 0.099 0.960
dir1 1.110 0.236 0.216 0.331 0.147 0.897 -0.003 -0.006 0.158 0.113 0.957
ind1 2.223 12.864 9.186 18.044 5.654 0.537 -0.313 -0.383 0.750 0.432 0.862
γ1 0.900 -0.093 -0.050 0.243 0.150 - -0.262 -0.260 0.287 0.087 0.988
ρ 0.300 0.127 0.139 0.189 0.090 0.733 -0.044 -0.038 0.115 0.069 0.930
β1 1.000 -0.007 -0.010 0.116 0.073 0.952 0.007 0.003 0.118 0.082 0.957
dir1 1.016 0.026 0.023 0.122 0.074 0.950 0.006 0.003 0.120 0.086 0.955
ind1 0.413 0.501 0.422 0.805 0.280 0.750 -0.024 -0.041 0.204 0.126 0.931
γ1 0.900 -0.044 0.000 0.156 0.100 - -0.141 -0.123 0.170 0.061 0.985
ρ 0.500 0.165 0.173 0.191 0.062 0.528 -0.037 -0.031 0.093 0.054 0.934
β1 1.000 -0.020 -0.019 0.128 0.084 0.958 0.010 0.007 0.124 0.086 0.958
dir1 1.054 0.077 0.077 0.167 0.101 0.929 0.004 0.002 0.131 0.093 0.956
ind1 0.946 1.693 1.299 2.390 0.722 0.583 -0.025 -0.061 0.322 0.200 0.934
γ1 0.900 -0.032 0.000 0.115 0.100 - -0.081 -0.067 0.110 0.047 0.977
ρ 0.700 0.153 0.162 0.162 0.030 0.267 -0.030 -0.023 0.068 0.039 0.931
β1 1.000 -0.030 -0.029 0.138 0.091 0.942 0.014 0.011 0.136 0.092 0.959
dir1 1.148 0.277 0.269 0.361 0.144 0.869 -0.000 -0.003 0.157 0.111 0.956
ind1 2.185 9.708 6.741 13.608 3.708 0.373 -0.037 -0.098 0.652 0.418 0.941
γ1 1.000 -0.160 -0.050 0.271 0.050 - -0.331 -0.322 0.350 0.085 0.000
ρ 0.300 0.132 0.145 0.189 0.086 0.717 -0.035 -0.030 0.112 0.069 0.936
β1 1.000 -0.012 -0.008 0.119 0.081 0.948 0.008 0.005 0.117 0.081 0.959
dir1 1.017 0.021 0.027 0.126 0.083 0.953 0.006 0.004 0.119 0.085 0.956
ind1 0.411 0.508 0.417 0.788 0.296 0.731 -0.006 -0.025 0.206 0.131 0.936
γ1 1.000 -0.090 -0.050 0.149 0.050 - -0.197 -0.180 0.214 0.049 0.000
ρ 0.500 0.176 0.184 0.197 0.057 0.469 -0.022 -0.017 0.084 0.052 0.940
β1 1.000 -0.024 -0.026 0.123 0.078 0.949 0.012 0.008 0.124 0.084 0.960
dir1 1.059 0.080 0.074 0.160 0.090 0.950 0.005 0.002 0.131 0.091 0.960
ind1 0.941 1.711 1.359 2.409 0.670 0.529 0.029 -0.008 0.325 0.204 0.945
γ1 1.000 -0.072 -0.050 0.113 0.050 - -0.134 -0.120 0.146 0.033 0.000
ρ 0.700 0.160 0.164 0.166 0.028 0.209 -0.016 -0.010 0.059 0.038 0.944
β1 1.000 -0.031 -0.029 0.132 0.088 0.952 0.017 0.013 0.135 0.090 0.958
dir1 1.164 0.304 0.283 0.387 0.146 0.865 0.001 -0.002 0.158 0.110 0.957
ind1 2.170 9.657 6.498 13.758 3.213 0.308 0.104 0.035 0.665 0.429 0.952

Table 4: n = 200, Signal to-noise ratio = 0.7, correlated W1 and W2

Grid Approach MCMC Approach
Param. True Biasav Biasme RMSE MAD Cover. Biasav Biasme RMSE MAD Cover.
γ1 0.000 0.148 0.100 0.232 0.100 - 0.294 0.282 0.313 0.075 0.000
ρ 0.300 0.064 0.069 0.110 0.058 0.875 -0.036 -0.033 0.089 0.055 0.933
β1 1.000 -0.006 -0.008 0.051 0.035 0.946 0.002 -0.000 0.051 0.035 0.958
dir1 1.012 0.004 0.001 0.051 0.036 0.956 0.001 -0.000 0.051 0.037 0.952

Continued on next page
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Table 4 – continued from previous page
Grid Approach MCMC Approach

Param. True Biasav Biasme RMSE MAD Cover. Biasav Biasme RMSE MAD Cover.
ind1 0.417 0.195 0.180 0.299 0.140 0.878 -0.034 -0.043 0.156 0.103 0.930
γ1 0.000 0.110 0.100 0.163 0.100 - 0.188 0.172 0.204 0.051 0.000
ρ 0.500 0.088 0.093 0.119 0.053 0.755 -0.044 -0.041 0.085 0.048 0.912
β1 1.000 -0.010 -0.011 0.055 0.039 0.950 0.003 0.001 0.054 0.038 0.963
dir1 1.039 0.018 0.017 0.061 0.042 0.958 -0.001 -0.003 0.057 0.041 0.955
ind1 0.961 0.597 0.525 0.802 0.321 0.768 -0.088 -0.106 0.266 0.167 0.912
γ1 0.000 0.106 0.100 0.144 0.100 - 0.149 0.137 0.163 0.042 0.000
ρ 0.700 0.104 0.109 0.119 0.036 0.589 -0.050 -0.045 0.081 0.042 0.865
β1 1.000 -0.018 -0.022 0.066 0.042 0.945 0.005 0.002 0.064 0.045 0.963
dir1 1.100 0.088 0.086 0.133 0.063 0.915 -0.008 -0.009 0.073 0.052 0.955
ind1 2.233 4.186 2.745 7.362 1.494 0.617 -0.261 -0.310 0.616 0.367 0.878
γ1 0.100 0.101 0.050 0.234 0.150 - 0.232 0.221 0.259 0.082 0.967
ρ 0.300 0.056 0.061 0.111 0.065 0.869 -0.040 -0.037 0.091 0.054 0.928
β1 1.000 -0.005 -0.006 0.051 0.035 0.948 0.002 -0.000 0.051 0.035 0.957
dir1 1.011 0.005 0.004 0.052 0.034 0.949 0.001 -0.000 0.051 0.037 0.952
ind1 0.417 0.179 0.148 0.298 0.151 0.881 -0.042 -0.051 0.157 0.102 0.924
γ1 0.100 0.070 0.050 0.154 0.100 - 0.137 0.121 0.168 0.065 0.961
ρ 0.500 0.081 0.086 0.112 0.054 0.795 -0.048 -0.044 0.088 0.048 0.896
β1 1.000 -0.010 -0.008 0.056 0.039 0.944 0.003 0.001 0.054 0.038 0.958
dir1 1.038 0.017 0.020 0.061 0.041 0.948 -0.001 -0.002 0.057 0.041 0.955
ind1 0.962 0.547 0.490 0.754 0.332 0.804 -0.101 -0.120 0.271 0.165 0.900
γ1 0.100 0.082 0.100 0.138 0.100 - 0.105 0.093 0.133 0.056 0.944
ρ 0.700 0.097 0.101 0.112 0.039 0.627 -0.052 -0.047 0.083 0.042 0.853
β1 1.000 -0.015 -0.015 0.067 0.043 0.927 0.006 0.003 0.063 0.044 0.965
dir1 1.099 0.084 0.080 0.124 0.062 0.909 -0.007 -0.009 0.072 0.051 0.956
ind1 2.234 3.510 2.437 5.172 1.381 0.655 -0.284 -0.340 0.623 0.353 0.867
γ1 0.500 0.020 0.000 0.254 0.150 - 0.014 0.010 0.136 0.098 0.991
ρ 0.300 0.047 0.048 0.107 0.067 0.868 -0.042 -0.039 0.092 0.055 0.925
β1 1.000 -0.003 -0.004 0.052 0.035 0.944 0.003 0.001 0.050 0.036 0.958
dir1 1.012 0.007 0.005 0.053 0.036 0.951 0.003 0.001 0.051 0.036 0.954
ind1 0.417 0.154 0.128 0.277 0.146 0.876 -0.048 -0.054 0.157 0.100 0.923
γ1 0.500 0.023 0.050 0.159 0.100 - 0.025 0.030 0.136 0.092 0.975
ρ 0.500 0.073 0.080 0.110 0.056 0.797 -0.048 -0.043 0.088 0.049 0.888
β1 1.000 -0.010 -0.009 0.055 0.037 0.950 0.004 0.002 0.054 0.038 0.960
dir1 1.041 0.019 0.020 0.059 0.038 0.955 0.000 -0.001 0.056 0.040 0.958
ind1 0.959 0.485 0.429 0.686 0.305 0.799 -0.101 -0.118 0.271 0.164 0.896
γ1 0.500 0.031 0.050 0.115 0.050 - 0.028 0.032 0.110 0.072 0.963
ρ 0.700 0.093 0.100 0.108 0.035 0.613 -0.043 -0.038 0.075 0.039 0.882
β1 1.000 -0.017 -0.016 0.065 0.043 0.934 0.006 0.003 0.061 0.042 0.960
dir1 1.110 0.085 0.080 0.123 0.057 0.898 -0.004 -0.006 0.070 0.050 0.957
ind1 2.223 2.751 2.113 3.986 1.091 0.642 -0.220 -0.279 0.585 0.341 0.887
γ1 0.900 -0.070 0.000 0.210 0.100 - -0.200 -0.185 0.231 0.080 0.975
ρ 0.300 0.056 0.062 0.108 0.056 0.852 -0.019 -0.013 0.082 0.052 0.931
β1 1.000 -0.005 -0.005 0.050 0.032 0.944 0.004 0.002 0.050 0.035 0.959
dir1 1.016 0.006 0.006 0.051 0.032 0.955 0.003 0.002 0.051 0.036 0.955
ind1 0.413 0.167 0.150 0.274 0.132 0.855 -0.003 -0.007 0.152 0.099 0.941
γ1 0.900 -0.022 0.000 0.121 0.100 - -0.098 -0.083 0.128 0.049 0.981
ρ 0.500 0.084 0.087 0.110 0.049 0.712 -0.018 -0.013 0.066 0.041 0.931
β1 1.000 -0.010 -0.010 0.055 0.039 0.949 0.006 0.004 0.053 0.037 0.959
dir1 1.054 0.026 0.026 0.065 0.041 0.940 0.002 0.001 0.056 0.039 0.959
ind1 0.946 0.502 0.449 0.720 0.274 0.722 0.001 -0.011 0.237 0.152 0.943
γ1 0.900 -0.016 0.000 0.095 0.050 - -0.058 -0.045 0.087 0.042 0.976

Continued on next page
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Table 4 – continued from previous page
Grid Approach MCMC Approach

Param. True Biasav Biasme RMSE MAD Cover. Biasav Biasme RMSE MAD Cover.
ρ 0.700 0.088 0.091 0.100 0.033 0.531 -0.017 -0.013 0.051 0.031 0.936
β1 1.000 -0.017 -0.015 0.063 0.043 0.932 0.008 0.006 0.059 0.040 0.960
dir1 1.148 0.089 0.088 0.121 0.056 0.868 -0.001 -0.002 0.070 0.049 0.966
ind1 2.185 1.890 1.588 2.449 0.765 0.566 -0.005 -0.039 0.484 0.307 0.942
γ1 1.000 -0.123 0.000 0.210 0.000 - -0.260 -0.244 0.280 0.070 0.000
ρ 0.300 0.065 0.069 0.107 0.057 0.833 -0.010 -0.004 0.079 0.051 0.934
β1 1.000 -0.007 -0.007 0.051 0.034 0.944 0.004 0.003 0.050 0.035 0.958
dir1 1.017 0.005 0.007 0.052 0.035 0.951 0.003 0.002 0.051 0.036 0.956
ind1 0.411 0.185 0.169 0.280 0.137 0.832 0.015 0.011 0.153 0.101 0.940
γ1 1.000 -0.071 0.000 0.120 0.000 - -0.153 -0.139 0.166 0.037 0.000
ρ 0.500 0.093 0.097 0.113 0.042 0.665 -0.006 -0.001 0.061 0.039 0.942
β1 1.000 -0.011 -0.010 0.055 0.034 0.937 0.007 0.005 0.053 0.037 0.958
dir1 1.059 0.027 0.027 0.063 0.038 0.947 0.003 0.001 0.057 0.039 0.963
ind1 0.941 0.530 0.490 0.654 0.248 0.673 0.048 0.036 0.239 0.151 0.948
γ1 1.000 -0.057 -0.050 0.089 0.050 - -0.106 -0.095 0.116 0.026 0.000
ρ 0.700 0.093 0.095 0.101 0.025 0.442 -0.004 -0.001 0.044 0.027 0.944
β1 1.000 -0.019 -0.018 0.061 0.040 0.929 0.010 0.008 0.059 0.040 0.960
dir1 1.164 0.089 0.083 0.119 0.055 0.880 0.001 -0.001 0.071 0.049 0.966
ind1 2.170 1.816 1.662 2.145 0.599 0.458 0.131 0.098 0.493 0.297 0.956

5. An applied illustration using Texas nursing homes

Our application builds on Blankmeyer et al. (2011) model for the (logged)
compensation (salary and benefits) of Texas nursing home CEO’s and con-
sists of 856 nursing homes in 2002.15 They argue that (logged) compensa-
tion of nursing home CEO’s (y) is determined by their boards of directors
using the following X−variables: 1) the patient mix achieved by the direc-
tor which they measure using the percent of total revenue that each facility
earned from private pay, medicaid and medicare reimbursements. The argu-
ment of Blankmeyer et al. (2011) is that private pay and Medicaid patients
are less profitable than Medicare patients, implying a negative relationship
with compensation for managers in facilities that rely more on private pay
and Medicaid payments,16 2) the logarithm of the occupancy rate defined
as: total resident days / (365 x number of beds). Blankmeyer et al. (2011)
argue that many Texas nursing homes could operate more profitably if they

15The sample of 856 nursing homes represents over 80% of facilities licensed by the state
in the same year and each facility’s senior administrator is treated as the CEO.

16We use private pay and medicare revenue proportions as two separate explanatory
variables, with medicaid excluded to avoid a linear combination that sums of unity. Private
pay proportion of revenue should have a negative sign and medicare proportion a positive
sign.
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achieved higher occupancy rates. This implies a positive relationship be-
tween this variable and managers compensation, indicating that managers
should be better compensated in facilities with fewer empty beds. 3) They
include two indicator/dummy variables in the set of explanatory variables:
i) an indicator for nursing homes that are operated for profit (= 1) or non-
profit (= 0), and ii) whether the nursing home is affiliated with a chain of
nursing homes (= 1) or is independently owned (= 0). The motivation for
these dummies is that for profit versus non-profit and chain versus indepen-
dent nursing homes provide differential levels of compensation to managers.

Blankmeyer et al. (2011) show dependence between compensation of one
nursing home CEO on compensation of CEOs from peer institutions, where
peer institutions were defined using institutions with similar expenditures on
the nursing function. The motivation for peer effects in CEO’s compensation
arises from a salary benchmarking argument. Salary benchmarking in this
managerial context would evaluate management skills of one CEO using
those of others from peer institutions to provide a benchmark. They found
evidence of positive peer group dependence, but did not consider spatial
dependence in their study.

However, there is an intuitive motivation for considering spatial depen-
dence in addition to the peer group dependence. Owners of nursing homes
who are making compensation decisions are more likely to have information
regarding compensation of other nursing home managers located nearby.
This would be especially true for nursing homes located in major metropoli-
tan areas such as Austin, Dallas, Houston and San Antonio. These owners
are likely to interact with other nursing facility owners in their own city.

Our geographically based connectivity matrix W1 is a binary matrix
based on the six nearest distance neighboring nursing homes while our con-
nectivity matrix based on peers, W2, is constructed using expenditures on
the nursing function to determine the eight nearest peers. These choices
were based on a replication of the exploration by Blankmeyer et al. (2011)
who explored 60 different models based on 1 to 10 peers as well as six differ-
ent similarity criteria, with the addition of spatial weight matrices consisting
of 1 to 8 nearest neighbors.17 Our findings were that a peer matrix based

17The similarity criteria considered in Blankmeyer et al. (2011) involved: 1) nursing
expenditures, 2) nursing staff, 3) square foot area of the facilities, 4) a combination of
nursing expenditures and square foot area, 5) a combination of nursing expenditures and
nursing staff, and 6) a combination of nursing staff and square foot area. The bivari-
ate measures of similarity were based on Mahalanobis distance to control for covariation
between the two measures.
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on expenditures on the nursing function and eight nearest peers along with
a spatial weight matrix based on six nearest neighbors had the highest pos-
terior model probability.18

We computed the correlation between the two weight matrices using the
method developed in Section 3.2. There was a low correlation between W1u
and W2u equal to 0.0221, suggesting these two types of connectivity are
capturing different types of dependence.

The model we estimate is presented in (24).

y = ρWcy +Xβ + ε

Wc = γ1W1 + (1− γ1)W2
(24)

Posterior distributions for parameters of the model were constructed
from 6,000 MCMC draws with 10,000 draws carried out, but the first 4,000
omitted for burn-in. Two base models were estimated, one based on the
spatial neighbors matrix W1 alone and a second based on the peer institution
matrix W2 alone. We then estimate the convex combination model relying
on both the grid and MCMC approaches developed here. The grid approach
estimates of the SAR model relied on a 0.01 grid of values for γ, while the
MCMC approach was used to integrate out this parameter from the posterior
distribution of model parameters.

5.1. Benchmark model results based on W1 and W2 alone

Estimation results for the posterior means, medians along with lower and
upper 95% credible intervals for models based on a spatial weight matrix
alone (γ1 = 1) and a peer weight matrix alone (γ1 = 0) are shown in
Tables 5 and 6.

The signs of the posterior mean estimates of β as well as the direct
and indirect effects for the indicator variable for facilities that are part of
a Chain are positive, indicating that compensation is higher for managers
of these facilities than in independent facilities. The For Profit indicator
variable also has mean estimates (β, direct, indirect) with positive signs,
suggesting that these facilities pay higher compensation to managers. The
Medicare variable also has positive posterior mean β, direct and indirect
effects, suggesting that facilities that derive a higher proportion of revenue
from Medicare patients reward managers with higher compensation than
nursing home relying more on medicaid patients. The Private pay variable

18We note that Blankmeyer et al. (2011) use an SDM model and slightly different
explanatory variables than those used here.
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Table 5: Estimation results based on γ1 = 1 (spatial dependence)

Variables lower 2.5% mean upper 97.5% sign/signif
Estimates

Constant 8.9263 9.8792 10.8517 +
For Profit 0.0208 0.0752 0.1282 +
Chain 0.0221 0.0702 0.1186 +
Share Private pay -0.1556 0.0269 0.2212
Share Medicare 0.1553 0.2819 0.4054 +
Log(occupancy rate) 0.6044 0.6418 0.6785 +
W1y 0.0226 0.1114 0.1971 +

Direct effects
For Profit 0.0208 0.0754 0.1282 +
Chain 0.0221 0.0704 0.1188 +
Share Private pay -0.1561 0.0271 0.2123
Share Medicare 0.1558 0.2825 0.4061 +
Log(occupancy rate) 0.6055 0.6431 0.6798 +

Indirect effects
For Profit 0.0009 0.0095 0.0227 +
Chain 0.0009 0.0090 0.0213 +
Share Private pay -0.0224 0.0034 0.0324
Share Medicare 0.0057 0.0356 0.0754 +
Log(occupancy rate) 0.0148 0.0811 0.1548 +
Notes: + indicates > 0 at the 5% level. W1 is the geographically-based
connectivity matrix.

coefficient is not significantly different from zero, implying that the effect of
this variable is not different from the medicaid share reference. Occupancy
rate has positive posterior mean β, direct and indirect effects, indicating
that managers who achieve higher occupancy rates are rewarded with higher
compensation.

Despite the similarity in signs and significance of direct and indirect
effects of the explanatory variables, there are substantial differences in the
magnitude of direct and indirect effects estimates from the two models.
Direct effects are larger for the model based on the spatial weight matrix,
while indirect effects are more than 3 times larger for the model based on
peer group weights. These differences stem from the much larger estimate
for the dependence parameter ρ in the peer group model (0.32) compared
to the spatial model (0.11).
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Table 6: Estimation results based on γ1 = 0 (peer group dependence)

Variables lower 2.5% mean upper 97.5% sign/signif
Estimates

Constant 6.7345 7.4724 8.2280 +
For Profit 0.0332 0.0825 0.1328 +
Chain 0.0115 0.0567 0.1020 +
Share Private pay -0.1237 0.0487 0.2195
Share Medicare 0.0885 0.2032 0.3193 +
Log(occupancy rate) 0.4127 0.4640 0.4127 +
W2y 0.2561 0.3247 0.3901 +

Direct effects
For Profit 0.0340 0.0847 0.1363 +
Chain 0.0118 0.0582 0.1048 +
Share Private pay -0.1270 0.0500 0.2255
Share Medicare 0.0908 0.2085 0.3285 +
Log(occupancy rate) 0.4228 0.4762 0.5304 +

Indirect effects
For Profit 0.0142 0.0378 0.0655 +
Chain 0.0050 0.0260 0.0495 +
Share Private pay -0.0561 0.0224 0.1042
Share Medicare 0.0383 0.0931 0.1579 +
Log(occupancy rate) 0.1489 0.2126 0.2856 +
Notes: + indicates > 0 at the 5% level. W2 is the peer-group based
connectivity matrix.
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5.2. Estimation results based on the grid approach

Table 7 presents the posterior model probabilities for each value of γ1

for a 0.01 grid.19 The highest model posterior probability is reached for
γ1 = 0.20. Model probabilities are monotonically rising up to the value of
0.20 and then falling monotonically. We would expect the highest posterior
probabilities should be distributed around a central value, which appears to
be the case here.

LeSage (2014) notes that numerical integration of the log-marginal likeli-
hood used to construct the posterior model probabilities requires that a great
deal of precision be maintained. Publicly available MATLAB R© functions to
calculate log-marginal likelihoods for both cross-sectional and static panel
data spatial regression models including SDM, SDEM, SLX are described
in LeSage (2015). The functions provide an option to rely on calculation
of an exact log-determinant term or a faster approach that uses a Monte
Carlo estimate to approximate the log-determinant (see Barry and Pace,
1999). The log-determinant term arises in the expression involving numer-
ical integration needed to produce the log-marginal likelihood. Results in
the third column of Table 7 were based on the slower but more accurate ex-
act log-determinant calculation described in Pace and Barry (1997) rather
than the faster Monte Carlo estimate to approximate the log-determinant.
The faster Monte Carlo estimate of the log-determinant produced the same
result pointing to γ1 = 0.20 as the highest probability model.20

Table 8 presents the results for the convex-combination SAR model with
γ1 = 0.2. The posterior means for the parameters β fall between those of
the two base models reported in Table 5 and Table 6, as we would expect.
We observe β estimates closer to those from the model based on peers only
where γ1 = 0, than a value of γ1 = 1 for the spatial dependence model.

Similar estimates for the coefficients β from the two models imply similar
direct effects estimates, since as pointed out by LeSage and Pace (2009), the
difference between the β estimates and direct effects from SAR models is
feedback from spatial neighbors. This arises because the main diagonal
terms of the partial derivative matrix (In− ρW )−1βr = (In + ρW + ρ2W 2 +
. . .)βr contain non-zero elements for the matrices W 2,W 3, etc. Non-zero
elements arise for the matrix W 2 because each nursing facility i is a neighbor

19We do not report results beyond γ1 = 0.51 as the posterior probabilities are equal to
0.

20The difference in speed between the two approaches is quite substantial; Less than
one minute for the approximation and several hours for the exact calculation for this
application.
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Table 7: Posterior model probabilities for a grid of γ1
γ1 Probability Log-marginal γ1 Probability Log-marginal

likelihood likelihood
0 0.00736 -396.46966 0.26 0.03658 -394.86671

0.01 0.00848 -396.32813 0.27 0.03337 -394.95853
0.02 0.00974 -396.18963 0.28 0.02990 -395.06837
0.03 0.01116 -396.05435 0.29 0.02629 -395.19710
0.04 0.01273 -395.92254 0.30 0.02266 -395.34549
0.05 0.01446 -395.79470 0.31 0.01914 -395.51432
0.06 0.01636 -395.67117 0.32 0.01583 -395.70439
0.07 0.01843 -395.55224 0.33 0.01280 -395.91648
0.08 0.02065 -395.43836 0.34 0.01013 -396.15121
0.09 0.02302 -395.33002 0.35 0.00782 -396.40936
0.10 0.02550 -395.22767 0.36 0.00590 -396.69157
0.11 0.02807 -395.13177 0.37 0.00434 -396.99841
0.12 0.03068 -395.04283 0.38 0.00311 -397.33046
0.13 0.03328 -394.96137 0.39 0.00218 -397.68807
0.14 0.03582 -394.88788 0.40 0.00148 -398.07173
0.15 0.03822 -394.82302 0.41 0.00098 -398.48172
0.16 0.04040 -394.76737 0.42 0.00064 -398.91827
0.17 0.04230 -394.72157 0.43 0.00040 -399.38142
0.18 0.04382 -394.68626 0.44 0.00025 -399.87122
0.19 0.04489 -394.66214 0.45 0.00015 -400.38753
0.20 0.04544 -394.64989 0.46 0.00009 -400.93015
0.21 0.04543 -394.65015 0.47 0.00005 -401.49869
0.22 0.04482 -394.66373 0.48 0.00003 -402.09265
0.23 0.04359 -394.69143 0.49 0.00001 -402.71145
0.24 0.04178 -394.73396 0.50 0.00001 -403.35430
0.25 0.03942 -394.79210 0.51 0.00000 -404.02028

to its neighbor, and diagonal elements of the matrix W 2 reflect non-zero
weights assigned to neighbors to neighbors, those for the matrix W 3 reflect
neighbors to neighbors to neighbors, (and so on for higher-order neighbors).
In the case of our SAR model based on a convex combination of weights,
non-zero elements on the diagonal of the matrix W 2

c reflect the fact that
each nursing home facility is a neighbor to both its spatial and peer group
neighboring facilities.

In the presence of positive dependence which arises here since ρ = 0.40,
we will have positive feedback effects leading to larger direct effects magni-
tudes (in absolute value terms) than the magnitude of the coefficients β. We
see this is the case when we compare the five respective β posterior mean
estimates (0.0795, 0.0562, 0.0486, 0.1900, 0.4635) to the corresponding direct
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effects (0.0816, 0.0577, 0.0499, 0.1951, 0.4758).
Despite these similarities in estimates of the parameters β and direct

effects for models based on γ1 = 0.20 and γ1 = 0, indirect effects estimates
from these two models are quite different in magnitude. Indirect effects
for the model based on γ1 = 0.20 are larger in magnitude in all cases,
having magnitudes nearly 50 percent larger than indirect effects from the
γ1 = 0 model. This indicates that incorporating geographic as well as peer
group dependence in the model leads to different posterior mean estimates
of spillover impacts on CEO compensation arising from both geographic
neighbors as well as peer facilities. We also note that the posterior mean and
median values for estimated values, direct and indirect effects are similar,
suggesting symmetric posterior distributions.

Table 8: Estimation results based on γ1 = 0.20

Variables lower 2.5% Mean Median upper 97.5% sign/signif
Estimates

Constant 5.7590 6.6405 6.6352 7.5497 +
For Profit 0.0302 0.0795 0.0791 0.1296 +
Chain 0.0112 0.0562 0.0563 0.1013 +
Share Private pay -0.1241 0.0486 0.0483 0.2194
Share Medicare 0.0746 0.1900 0.1905 0.3068 +
Log(occupancy rate) 0.4128 0.4635 0.4627 0.5151 +

Ŵcy 0.3181 0.4006 0.4011 0.4801 +
Direct effects

For Profit 0.0310 0.0816 0.0811 0.1329 +
Chain 0.0114 0.0577 0.0579 0.1040 +
Share Private pay -0.1270 0.0499 0.0496 0.2254
Share Medicare 0.0765 0.1951 0.1956 0.3159 +
Log(occupancy rate) 0.4230 0.4758 0.4752 0.5295 +

Indirect effects
For Profit 0.0180 0.0516 0.0502 0.0924 +
Chain 0.0068 0.0365 0.0356 0.0706 +
Share Private pay -0.0803 0.0317 0.0306 0.1494
Share Medicare 0.0459 0.1234 0.1203 0.2174 +
Log(occupancy rate) 0.2040 0.3010 0.2973 0.4168 +

Notes: + indicates > 0 at the 5% level. Ŵc = 0.2W1 + 0.8W2

Our approach also allows a test for the presence of other connectivity
matrices in the convex combination. For instance, in addition to W1, the six
nearest neighbors and W2, the eight peers based on (logged) expenditures
on the nursing function connectivity matrices, we added a third matrix W3

that reflects eight peers constructed using the (logged) square foot area of
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the nursing homes. One might expect a high correlation between the two
different peer group matrices, since these are both based on measures of
facility size. However, the correlation between between W2u,W3u equals
0.0504, suggesting this is not the case. The correlation between W1u,W2u
equals 0.0221, and that between W1u,W3u equals 0.0556, suggesting these
weights are not highly correlated with each other.

The model we wish to estimate is still the same, except that Wc is now
constructed as follows:

Wc = γ1W1 + γ2W2 + (1− γ1 − γ2)W3 (25)

The posterior model probability results from analyzing this 3-way convex
combination of connectivity matrices, using a 0.05 grid of values for γ1, γ2

are shown in Table 9.21 Posterior model probabilities show that models
including W3 receive no posterior probability support, confirming that a
model based on the convex combination of the two weight matrices W1,W2

has more support from the data. These results are promising since they sug-
gest that we can use the simple grid approach from Section 2.1 that compares
models conditional on their connectivity matrices to determine the relevance
of weighting matrices in the cross-sectional dependence scheme defined by
the convex combination. One issue that often arises when practitioners at-
tempt to include multiple weight matrices in a model is the question of
redundancy. Should we add another weight matrix to our model? The ap-
propriate answer would be only if the additional weight matrix reflects a
model specification that incorporates another dependence structure for re-
gions/observations that has some posterior model probability support from
the data. Our approach allows practitioners to explore this issue.

5.3. Estimation results based on the MCMC approach

Table 10 shows estimates from the model that uses MCMC estimation
to integrate out over the parameter γ1. In contrast to estimates from the
grid approach, we are able to present posterior mean, median and credible
intervals for the parameter γ1. Despite the fact that we present posterior
estimates for the parameter γ1, direct and indirect effects estimates are
constructed using all draws for this parameter that arise during MCMC

21Again, we only report the convex combinations with non-zero posterior model prob-
ability based on 4 decimal digits. We also used the exact value of the log-determinant
rather than the approximated value to compute log-marginal likelihood values.
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Table 9: Posterior model probabilities for convex combinations using 3 connectivity ma-
trices

γ1 γ2 1− γ1 − γ2
Posterior log-marginal

probability Likelihood
0.50 0.50 0 0.0000 -403.3543
0.35 0.60 0.05 0.0002 -401.8628
0.30 0.65 0.05 0.0007 -400.3920
0.45 0.55 0 0.0007 -400.3875

0 0.95 0.05 0.0015 -399.6345
0.25 0.70 0.05 0.0018 -399.4430
0.05 0.90 0.05 0.0024 -399.1896
0.20 0.75 0.05 0.0030 -398.9333
0.10 0.85 0.05 0.0032 -398.8835
0.15 0.80 0.05 0.0036 -398.7744
0.40 0.60 0 0.0072 -398.0717

0 1 0 0.0358 -396.4697
0.35 0.65 0 0.0380 -396.4094
0.05 0.95 0 0.0702 -395.7947
0.30 0.70 0 0.1101 -395.3455
0.10 0.90 0 0.1238 -395.2277
0.15 0.85 0 0.1856 -394.8230
0.25 0.75 0 0.1914 -394.7921
0.20 0.80 0 0.2207 -394.6499

estimation, making the posterior distribution of these effects estimates un-
conditional on any particular value of the parameter γ1. This is what distin-
guishes this approach from the grid approach that produces effects estimates
that are conditional on the single estimated value of γ̄1 = 0.20.

In Table 10, we see a posterior mean for γ̂1 = 0.1434 (and a median of
0.1400), which differs slightly from the single value of γ̄1 = 0.20 produced
by the grid approach to estimation. The similarity between posterior mean
and median values indicates symmetry of the posterior distribution, which
reinforces the confidence we have in our results. We note that the estimated
γ1 is significantly different from zero, since the 2.5% quantile of its posterior
distribution is equal to 0.01. Table 11 compares the results using the two ap-
proaches. It reports posterior mean estimates from both models along with
their respective credible interval size, computed as the difference between
the 97.5% and the 2.5% quantiles values.

The posterior mean estimate for the dependence parameter ρ is slightly
lower in the conditional model (0.34) versus the unconditional model (0.4).
However, with the exception of the constant term, β estimates as well as
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direct and indirect impacts are similar for both models.
For this application, we do not observe significant difference in the size

of credible intervals. The grid approach thus performs as well as the MCMC
approach, with the difference that the latter allows to perform inference on
the convex combination parameters.

Table 10: Posterior parameter estimates based on unconditional MCMC estimates

Variables Lower 2.5% Mean Median Upper 97.5% sign/signif

Estimates

Constant 6.4679 7.3036 7.3007 8.1361 +
For Profit 0.0296 0.0805 0.0806 0.1308 +
Chain 0.0117 0.0575 0.0576 0.1037 +
Share Private pay -0.1280 0.0480 0.0472 0.2248
Share Medicare 0.0910 0.2054 0.2038 0.3258 +
Log(occupancy rate) 0.4307 0.4816 0.4816 0.5308 +
Wc(γ1)y 0.2661 0.3407 0.3411 0.4161 +
γ1 0.0100 0.1434 0.1400 0.3095

Direct effects

For Profit 0.0302 0.0822 0.0823 0.1334 +
Chain 0.0119 0.0587 0.0589 0.1061 +
Share Private pay -0.1307 0.0490 0.0482 0.2302
Share Medicare 0.0929 0.2097 0.2083 0.3330 +
Log(occupancy rate) 0.4400 0.4917 0.4918 0.5418 +

Indirect effects

For Profit 0.0143 0.0402 0.0394 0.0712 +
Chain 0.0056 0.0288 0.0279 0.0562 +
Share Private pay -0.0655 0.0241 0.0229 0.1137
Share Medicare 0.0429 0.1029 0.1002 0.1800 +
Log(occupancy rate) 0.1662 0.2412 0.2376 0.3347 +

Note: + indicates > 0 at the 5% level.

6. Conclusion

We propose two approaches to estimating models based on convex com-
binations of connectivity matrices, where each matrix can reflect a different
type of cross-sectional dependence structure assigned to the sample obser-
vations. The first approach, labeled grid approach, constitutes a Bayesian
alternative to the method set forth in Hazır et al. (2016), while the second
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Table 11: Comparison of unconditional (MCMC) and conditional (grid) estimates (γ̄1 =
0.2)

MCMC approach Grid approach
Variables Mean value Interval size Mean value Interval size

Estimates

Constant 7.3036 1.6681 6.6405 1.7907
For Profit 0.0805 0.1012 0.0795 0.0994

Chain 0.0575 0.0921 0.0562 0.0901
Share Private pay 0.0480 0.3527 0.0486 0.3435
Share Medicare 0.2054 0.2348 0.1900 0.2322

Log(occupancy rate) 0.4816 0.1001 0.4627 0.1023
Wcy 0.3407 0.1500 0.4006 0.1620

Direct effects

For Profit 0.0822 0.1032 0.0816 0.1019
Chain 0.0587 0.0942 0.0577 0.0926

Share Private pay 0.0490 0.3609 0.0499 0.3524
Share Medicare 0.2097 0.2402 0.1951 0.2394

Log(occupancy rate) 0.4917 0.1017 0.4758 0.1065

Indirect effects

For Profit 0.0402 0.0568 0.0516 0.0744
Chain 0.0288 0.0507 0.0365 0.0638

Share Private pay 0.0241 0.1792 0.0317 0.2297
Share Medicare 0.1029 0.1371 0.1234 0.1715

Log(occupancy rate) 0.2412 0.1685 0.3010 0.2128

method, called the MCMC approach, integrates out the parameters of the
convex combination.

We argue that the convex combination approach has advantages over
past spatial econometrics literature that has extended conventional spatial
regression models by directly introducing multiple weight matrices. For
instance, the constraints on the parameter spaces are easier to handle and the
grid approach can be estimated using standard spatial regression algorithms.
We can also mention that the MCMC approach directly allows to perform
inference on the impacts of the model as the draws are used both to estimate
the parameters and the impacts.

We discuss several practical concerns that arise for successful use of these
models by practitioners, including: the distinction between connectivity ma-
trices and regressors and interpretative issues that arise when a functional
relationship exists between these; the impact of correlation between multiple
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connectivity matrices and tests that can be used to assess this; and issues
that can arise regarding inference at the boundary of the parameter space
for γ.

Monte Carlo experiments were carried out to compare our two proposed
approaches to estimating these models, which showed that one approach can
suffer from bias in average direct and indirect effects as well as incorrect cov-
erage intervals. Incorrect coverage intervals can lead to improper inferences
regarding the significance of effects estimates that are typically the focus of
spatial regression models.

To illustrate the method, we apply the two proposed approaches to a
cross-sectional salary benchmarking model from Blankmeyer et al. (2011)
for compensation of CEOs in 856 nursing homes located in the state of
Texas. We introduce a convex combination of spatial dependence and peer
group cross-sectional dependence, and find that peer-group dependence is
relatively more important (86%) in determining CEO compensation than
spatial dependence (14%), with both types of dependence playing a role
in explaining variation of CEO compensation across the sample of nursing
homes.

A future extension of the methods proposed here would involve static
panel data models. The grid approach to estimating the convex combination
models rely on Bayesian methods described in LeSage (2015) to calculate log-
marginal likelihoods (and associated posterior model probabilities) for both
cross-sectional and static panel data spatial regression models, which should
make this type of extension simple. A related point is that the Bayesian
model comparison methods described in LeSage (2014) focus on calculating
posterior probabilities that compare both cross-sectional and panel data
SDM, SDEM, SLX specifications. This should make it possible to embed
exploration of convex combinations of weight matrices in a broader search
for the model specification.

A drawback to implementation of the MCMC approach used here is re-
liance on pre-calculation of the log-determinant term that appears in the
conditional distributions for the parameters ρ and γ over a grid of values for
these parameters. While this works effectively to avoid calculation of log-
determinants during each pass of the MCMC sampler for the case of two or
three weight matrices, it does not scale well to cases involving more weight
matrices. A subject for future research is to develop a more computation-
ally efficient approach for extending the MCMC approach set forth here to
problems involving more weight matrices.
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Appendix A. Conditional distributions for alternative spatial re-
gression specifications involving a convex combina-
tion of weights

We set forth the conditional distributions required for MCMC estimation
of alternatives to the SAR spatial regression specification described in the
text. These include: the spatial Durbin model (SDM), spatial lag ofX model
(SLX) and spatial Durbin error model (SDEM). LeSage (2014) argues these
three alternative spatial regression specifications should be used in most
applied work.

The griddy Gibbs procedures used to sample the parameters ρ and γ are
also set forth.

Appendix A.1. The SDM model

The SDM specification in (A.1) involves both X and Wc(γ)X as matrices
of explanatory variables, where γ = [γ1, . . . , γL] denotes the vector contain-
ing all the parameters of the convex combination. We can collect the set
of explanatory variables in the matrix Z = [ιn, X, WcX], with associated
coefficients vector ψ = [α, β′, θ′]′. Rewriting (A.1) using Z and ψ allows to
express both the SAR the SDM model using the same matrix expressions.
Expressions for the conditional distributions required for MCMC sampling
of the SAR specification can be extended to the case of the SDM specifi-
cation by replacing X with Z and β by ψ in expressions of the conditional
posterior distributions of the SAR model.

SDM : y = ρWc(γ)y +Xβ +Wc(γ)Xθ + ε (A.1)

ε ∼ N(0, σ2In)

Wc(γ) =

L∑
`=1

γ`W`

Appendix A.2. The SDEM model

For the SDEM model in (A.2), we rely on the same normal prior for
ψ = (β′, θ′)′, and the uniform prior for λ, since this scalar dependence pa-
rameter is constrained to lie in the open interval: (−1, 1), which can be
imposed during MCMC estimation using rejection sampling. The inverse
Gamma(ā, b̄) distribution is used for the parameter σ2 with ā, b̄ → 0, pro-
ducing little prior information.
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SDEM : y = Xβ +Wc(γ)Xθ + (In − λWc(γ))−1u. (A.2)

u ∼ N(0, σ2In)

Wc(γ) =

L∑
`=1

γ`W`

The conditional posterior for ψ (given λ, γ, σ2) takes the form in (A.3).

p(ψ|λ, γ, σ2) ∼ N(ψ∗,Σ∗) (A.3)

ψ∗ = Σ∗(Z∗
′
y∗ + σ2Σ̄−1

ψ ψ̄)

Σ∗ = (Z∗
′
Z∗ + σ2Σ̄−1

ψ )−1

y∗ = y − λWc(γ)y (A.4)

Z∗ = Z − λWc(γ)Z (A.5)

Z = [ιn, X, Wc(γ)X]

Wc(γ) =
L∑
`=1

γ`W`

The conditional posterior for σ2 (given ψ, γ, λ) takes the form in (A.6),
when we set the prior parameters ā = b̄ = 0. The vectors y∗, Z∗ are as
defined in (A.4) and (A.5) above.

p(σ2|ψ, λ, γ) ∝ (σ2)−(n
2

)exp

(
− 1

2σ2
(y∗ −−Z∗ψ)′(y∗ − Z∗ψ)

)
(A.6)

∼ IG(a1, b1)

a1 = n/2

b1 = (y∗ − Z∗ψ)′(y∗ − Z∗ψ)/2

The (log) conditional posterior for λ (given ψ, γ, σ2) takes the form in
(A.7), where we use the expression: (e′e)(λ, γ) to indicate that the sum of
squared errors depends on parameters λ, γ.

ln p(λ|ψ, γ, σ2) ∝ −n
2

lnσ2 + ln|In − λWc(γ)|

− 1

2σ2
(e′e)(λ, γ) (A.7)

e′e(λ, γ) = ((y∗ − Z∗ψ)′ (y∗ − Z∗ψ)
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As in the case of ρ for the SDM specification, this distribution is not one
of known form. We sample the parameter λ from this conditional distri-
bution using the same griddy Gibbs approach described for ρ in Appendix
B.1.

The (log) conditional posterior distribution for γ (given ψ, λ, σ2), pre-
sented in equation (A.8), takes an unknown form as in the case of λ. Depend-
ing on the number of matrices used to construct the convex combination,
alternative methods will be used to sample this vector of parameters. The
details are presented in Appendix B.2.

ln p(γ|ψ, λ, σ2) ∝ −n
2

lnσ2 + ln|In − λWc(γ)| (A.8)

− 1

2σ2
e′e(λ, γ)

e′e(λ, γ) = ((y∗ − Z∗ψ)′ (y∗ − Z∗ψ) (A.9)

Appendix A.3. The SLX model

For the case of the SLX model in (A.10), we have both X and Wc(γ)X as
matrices of explanatory variables, which we can collect in Z = [ιn, X, Wc(γ)X],
with associated coefficients vector ψ = [α, β′, θ′]′. Replacing the matrix
X with Z and the coefficients vector β with ψ in the expressions for the
conditional distributions of the SAR specification produces conditional dis-
tributions required for MCMC sampling of the parameters ψ and σ2 for the
SLX model. Relying on the Z and ψ notations, we observe that the SLX is
nested by the SAR, when the parameter ρ is set to zero. Hence, to estimate
the SLX, we use the SAR framework without sampling for ρ, which is fixed
at a zero value.

SLX : y = αιn +Xβ +Wc(γ)Xθ + ε (A.10)

ε ∼ N(0, σ2In)

Wc(γ) =

L∑
`=1

γ`W`

Appendix B. Griddy Gibbs sampling

Appendix B.1. Griddy Gibbs sampling for ρ ( and/or λ)

For griddy Gibbs sampling we rely on expressing the log conditional
posterior distribution for the parameter ρ as a vector over a grid of values
for ρ. A restriction on the grid that −1 < ρ < 1 is imposed to ensure
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stability of the spatial autoregressive process to this range.22 This vector
over a grid of values for ρ allows us to use univariate numerical integration
to obtain a normalizing constant and then construct a cumulative density
function (CDF) for the conditional posterior for the parameter ρ. Given this
CDF, we produce a draw from the conditional distribution using inversion,
an approach introduced by Smith and LeSage (2004).

Specifically, we can express the SAR conditional distribution for ρ as:

ln p(ρ|β, γ, σ2) ∝ −N
2

lnσ2 + ln|In − ρWc(γ)|

− 1

2σ2
s2(ρ|γ)

s2(ρ|γ) = ([In − ρWc(γ)]y −Xβ)′ ([In − ρWc(γ)]y −Xβ)

(B.1)

We draw on the vectorization scheme for the grid of q values for ρ from
Pace and Barry (1997), to produce the following q × 1 vector over values of
ρ, which is conditional on a particular set of values for the parameter vector
γ, indicated using: s2(ρ|γ).


ln p(ρ1|y)
ln p(ρ2|y)

...
ln p(ρq|y)

 ∝


ln |In − ρ1Wc(γ)|
ln |In − ρ2Wc(γ)|

...
ln |In − ρqWc(γ)|

− (
n− k

2
)


ln s2(ρ1|γ)
ln s2(ρ2|γ)

...
ln s2(ρq|γ)


(B.2)

and we note that the sum of squared errors terms s2(ρi|γ) can be expressed
as a vector over values ρi, i = 1, . . . , q using:

s2(ρi|γ) = e′oeo − 2ρie
′
d(γ)eo + ρ2

i e
′
d(γ)ed(γ) (B.3)

βo = (X ′X)−1X ′y

βd(γ) = (X ′X)−1X ′Wc(γ)y (B.4)

eo = y −Xβo
ed(γ) = Wc(γ)y −Xβd(γ)

This vector s2(ρi|γ) can be calculated rapidly for a given value of the
parameter vector γ. We also need the log-determinant term ln |In−ρiWc(γ)|

22A similar restriction is imposed on the parameter λ.
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over the grid of values for ρi. The log-determinant terms are pre-calculated
over grids of values for ρ, γ`, ` = 1, . . . , L and are stored in a 3-dimensional
matrix of size (np× ng ×L), where np is the number of values for ρi in the
grid, ng the number of values for each γ`, and L is the size of the parameter
vector γ. During MCMC sampling, we lookup the appropriate vector of
log-determinant values based on the current values of γ.

Appendix B.2. Griddy Gibbs sampling for γ`, ` = 1, . . . , L

For the case of two weight matrices where we have only γ1 and (1− γ1),
a similar approach to that used for the parameter ρ (or λ) can be used for
sampling γ1 values.

The (log) conditional posterior for γ1 in the case of the SAR model (given
β, ρ, σ2) can be written as in (B.5).

ln p(γ1|β, ρ, σ2) ∝ −n
2

lnσ2 + ln|In − ρWc(γ1)| − 1

2σ2
s2(γ1|ρ) (B.5)

We want to express this as a vector over a grid of values for γ1 that we
designate using γi1, i = 1, . . . , nq, where nq is determined by the grid size.
The sum of squared error terms can be expressed as shown in (B.6).

s2(γi1|ρ) = e′oeo − 2ρe′deo(γ
i
1) + ρ2e′d(γ

i
1)ed(γ

i
1) (B.6)

eo = y −Xβo
ed(γ

i
1) = Wc(γ

i
1)y −Xβd

βo = (X ′X)−1X ′y

βd = (X ′X)−1X ′Wc(γ
i
1)y

Wc(γ
i
1) = γi1W1 + (1− γi1)W2

This can be expressed as a vector over a grid of values for γ1 using an
approach similar to that described for the case of ρ.

For cases involving more than two weight matrices, the vector γ is sam-
pled relying on a Metropolis-Hasting approach based on a block sampling
method we develop. This method proposes all parameters γ` such that they
meet the constraint

∑
` γ` = 1. It also relies on a reversible jump proce-

dure. Specifically, (for each γ`, ` = 1, . . . , L− 1) a three-headed coin flip (a
uniform random number on the open interval coin flip = U(0, 1), with head
#1 equal to a value ≤ 1/3, head #2 a value > 1/3 ≤ 2/3 and head #3 a
value > 2/3 < 1.) Given a head #1 result, we set a proposal for γp` using a
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uniform random draw on the interval [0, γc` ), the current value. A head #2
results in setting the proposal value equal to the current value (γp` = γc` ),
while a head #3 selects a proposal value based on a uniform random draw on
the interval (γc` , 1]. This group of proposed values is then either accepted or
rejected using a Metropolis-Hasting approach (see LeSage and Pace, 2009,
chap. 5). LeSage and Debarsy (2017) report Monte Carlo results for this
block sampling scheme, with the reversible jump proposal procedure.
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