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Abstract

There is a great deal of literature regarding use of non-geographically based connec-
tivity matrices or combinations of geographic and non-geographic structures in spatial
econometrics models. We focus on convex combinations of interaction matrices that re-
sult in a single matrix reflecting multiple types of connectivity, where coefficients from
the convex combination can be used for inference regarding the relative importance of
each type of connectivity. This type of model specification raises the question — which
weight matrices should be used and which should be ignored. For example, in the case
of L candidate weight matrices, there are M = 2L−L−1 possible ways to employ two or
more of the L weight matrices in alternative model specifications. We use Metropolis-
Hastings guided Monte Carlo integration during MCMC estimation of the models to
produce log-marginal likelihoods and associated posterior model probabilities for the
set of M possible models, which allows for Bayesian model averaged estimates. We
focus on MCMC estimation for a set of M models, estimates of posterior model prob-
abilities, model averaged estimates of the parameters, scalar summary measures of the
non-linear partial derivative impacts, and associated empirical measures of dispersion
for the impacts. We finally apply our procedure to a hedonic price model and show that
a convex combination of similarity of houses characteristics, reflecting house design, is
more adequate than geographic proximity to model cross-sectional dependence among
houses selling price.

KEYWORDS: Markov Chain Monte Carlo estimation, SAR, block sampling pa-
rameters for a convex combination, cross-sectional dependence, hedonic price
model.

JEL: C11, C21, C51, R32
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1 Introduction

Spatial regression models typically rely on spatial proximity to specify weight matrices,

where the relative Euclidean distance between observations determines the strength of de-

pendence between observations. One can generalize the notion of Euclidean distance to

produce measures of dependence between observations based on other metrics. For exam-

ple, Pace et al. (2000) proposed a model for prices of homes sold that occur at irregular

points in space and time, generalizing distance to include relative locations in time. Related

work by Pace et al. (2002) relied on generalized distances that considered the number of

bedrooms and bathrooms (of nearby homes) to specify the structure of selling price depen-

dence between homes, with the motivation that appraisers determine market price estimates

based on homes comparable in these two metrics.

Once we open the door to non-spatial metrics as a way to specify dependence between

cross-sectional observations, a host of issues arise, which are discussed in LeSage and Pace

(2011), and Debarsy and LeSage (2018). Blankmeyer et al. (2011, p.94) point out that

“a single weight matrix, based on a multivariate similarity criterion (generalized distance)

requires a norm to prevent scale differences from influencing the weight placed on the various

measures of similarity. (This is unlike the case of spatial proximity where Euclidian distance

provides a natural scaling)”.

We avoid the scaling issue that arises in the case of generalized distance using an ap-

proach set forth in Debarsy and LeSage (2018) that relies on convex combinations of differ-

ent connectivity matrices to form a single weight matrix, first explored by Pace and LeSage

(2002) as well as Hazir et al. (2018). The convex combination approach uses a single n× n

weight matrix Wc(Γ) =
∑L

` γ`W`, with 0 ≤ γ` ≤ 1, ` = 1, · · · , L and
∑L

`=1 γ` = 1,

constructed based on alternative underlying types of connectivity between n observations

reflected by underlying n×n matrices W`. The resulting convex combination of underlying

connectivity structures, Wc(Γ) can be used to specify dependence between n observations

based on a convex combination of L different types of connectivity between observations.

The scalar parameters γ` indicate the relative importance assigned to each type of de-

pendence in the global cross-sectional dependence scheme. The two sets of constraints

imposed reflect the fact that this approach relies on a convex combination. When each

W`, ` = 1, · · · , L, is row-normalized, then Wc(Γ) obeys the conventional row-normalization,
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which is useful for interpreting model estimates in terms of their partial derivative impacts

on the dependent variable. This approach based on convex combinations avoids the issue

of scaling for different metrics used in a generalized measure of distance by casting the

problem as one of relative distance/proximity, inherent in conventional spatial regression

weight matrices.

The convex combination of connectivity matrices model specification raises the question

of which matrices should be used and which should be ignored. For example, in the case

of L candidate connectivity matrices, there are M = 2L − L − 1 possible ways to employ

two or more of the L matrices in alternative model specifications. When L = 5, we have

M = 26 possible models involving two or more matrices, and for L = 10, M = 1, 013. We

use Metropolis-Hastings guided Monte Carlo integration during MCMC estimation of the

models to produce log-marginal likelihoods and associated posterior model probabilities for

the set of M possible models, which allows for Bayesian model averaged estimates.

We follow Debarsy and LeSage (2018) in using Markov Chain Monte Carlo (MCMC)

estimation of the model.1 A number of challenges for estimation and inference arise in the

case of a single model, where the weight matrix Wc(Γ) is a function of estimated parameters

γ`. One is that the log-determinant term that arises in the likelihood (and the conditional

distribution for the spatial dependence parameter of the model) cannot be pre-calculated

over a grid of values for the spatial dependence parameter, as is conventionally done in

single weight matrix spatial regression models.2 This is because changes in the parameters

γ` lead to a new matrix Wc(Γ) and associated log-determinant term |In − ρWc(Γ)|, where

we use Wc(Γ) to indicate that the matrix Wc depends on the vector Γ of parameters γ`, ` =

1, · · · , L. A second issue relates to dealing with the restrictions that need to be imposed on

the parameters γ` during estimation: 0 ≤ γ` ≤ 1, ` = 1, · · · , L and
∑L

`=1 γ` = 1. A third

problem involves calculating simulated (empirical) measures of dispersion for the partial

derivatives ∂y/∂x used to interpret estimates from this single model.

Regarding estimation of individual/single models, we draw on earlier work by Pace

and LeSage (2002) who use a Taylor series approximation for the log-determinant term

in our model to address the first issue. A fourth-order Taylor series approximation to the

1They focus on issues pertaining to proper use and interpretation of models involving convex combinations
of connectivity matrices, but do not address the challenges regarding estimation and inference explored here,
nor the Bayesian model averaging solution to account for model uncertainty.

2For spatial autoregressive processes, the interval −1 < ρ < 1 ensures a positive definite variance-
covariance matrix.
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log-determinant is set forth that uses traces calculated from products of the multiple connec-

tivity matrices prior to MCMC sampling. This allows rapid calculation of an approximation

to the log-determinant term for any given set of γ` and ρ values during MCMC sampling.

The second issue regarding the restrictions on the parameters γ`, is addressed using a

reversible jump MCMC block sampling scheme for these parameters. A block of candidate

values for γ` is proposed that obey the above mentioned restrictions and this block of

parameters is then accepted or rejected in a Metropolis-Hastings (M-H) step.

The third challenge involves calculating (empirical) measures of dispersion for the par-

tial derivatives ∂y/∂x that LeSage and Pace (2009) label effects estimates. A measure

of dispersion for the (non-linear) effects is typically constructed by evaluating the partial

derivatives using a large number (say 1,000) Markov Chain Monte Carlo (MCMC) draws

for the parameters. Expressions for the partial derivatives require knowledge of the main

diagonal elements of an n× n matrix inverse. For the case of single weight matrix, LeSage

and Pace (2009) show how to use a (stochastic) trace approximation to find the main diag-

onal elements of the matrix inverse without calculating the full matrix inverse thousands of

times. However, their approach does not immediately apply to the model developed here.

We mix exact and approximate low-order traces based on the Taylor series approximation

with stochastic estimates of higher-order traces to produce an extension of the method from

LeSage and Pace (2009) that avoids calculation of the matrix inverse.

Having addressed issues associated with estimation of a single model, there is still the

question of which connectivity matrices are most consistent with the sample data and which

are not. As noted, a number M = 2L − L− 1 possible models arise for a set of L different

matrices. We show how Metropolis-Hastings guided Monte Carlo integration of the joint

posterior can be used during MCMC estimation of the models to produce log-marginal

likelihoods and associated posterior model probabilities for each of the M possible models.

This allows posterior inference regarding which connectivity matrices are most consistent

with the sample data and also provides the basis for a Bayesian model averaged set of

estimates.

In Section 2, we set forth matrix expressions for the model and discuss the MCMC

estimation approach. We also provide specifics regarding a computationally efficient ap-

proach that relies on trace approximations and quadratic forms involving outer vectors of

parameters and inner matrices of sample data. In addition, we present the trace approx-
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imation to the log-determinant term that arises in conditional distributions of the model

parameters; the joint posterior distribution of the spatial dependence parameters in the

model; an efficient approach to calculate partial derivative estimates needed to interpret

the model; a Metropolis-Hastings tuned Monte Carlo integration approach to calculating

the log-marginal likelihood; an analysis of computational efficiency; and our approach to

Bayesian model averaging.

Section 3 provides results from Monte Carlo experiments that explores bias and coverage

to validate our approach to estimation. An applied illustration of the method in a hedonic

house price model is the subject of section 4. Finally, section 5 concludes.

2 Computationally efficient expressions for the model

The spatial autoregressive (SAR) model that we wish to estimate is shown in (1), where

each W` represents an n×n connectivity matrix whose main diagonal contains zero elements

and row-sums of the off-diagonal elements equal one, with n being the number of obser-

vations. Non-zero (off-diagonal) matrix elements i, j of each W` reflect that observation

j exhibits interaction with observation i, with different connectivity matrices describing

different possible types of interaction (e.g., spatial, economic, and so on).

y = ρWc(Γ)y +Xβ + ε (1)

Wc(Γ) =
L∑
`=1

γ`W`

0 ≤ γ` ≤ 1
L∑
`=1

γ` = 1

The n×k matrix X in (1) contains explanatory variables, with β being the associated k×1

vector of parameters. The n×1 vector ε represents a constant variance normally distributed

disturbance term, ε ∼ N(0, σ2In).

The SAR model in (1) can be expressed as shown in (2), a computationally convenient

expression that isolates the parameters ρ, γ`, ` = 1, . . . , L in the (L+ 1)× 1 vector ω.
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ỹω = Xβ + ε (2)

ỹ =
(
y W1y W2y . . . WLy

)

ω =



1

−ργ1

−ργ2
...

−ργL


=

 1

−ρΓ

 , Γ =


γ1

γ2
...

γL



The value of isolating the parameter vector ω is that this allows us to pre-calculate the

n× L matrix ỹ prior to the beginning of the MCMC sampling loop.

2.1 The Markov Chain Monte Carlo (MCMC) estimation scheme

We note that successful estimation of parameters for the model in (2) requires a sufficiently

large sample n of observations. To see this, note that the matrices W` reflect important

sample data in this type of model, as we wish to make distinctions between alternative spec-

ifications of W`. Highly correlated connectivity matrices will lead to problems identifying

the parameters Γ. Distinguishing between alternative interaction structures also requires

that spatial dependence reflected by the parameter ρ is different from zero, which should

be clear when considering that for ρ = 0, the parameters Γ are not identifiable.

Conditional distributions for the model parameters required to implement MCMC esti-

mation of the SAR specification in (1) are set forth here. Since our focus is on large samples

n, we rely on uninformative priors for the parameters β, as these would not likely impact

posterior estimates. For the same reason, we rely on an uninformative inverse Gamma(ā, b̄)

prior for σ2, where we let ā, b̄ → 0. We employ a uniform prior for ρ, with the constraint

(−1 < ρ < 1) imposed during MCMC estimation using rejection sampling.3

Since the parameters γ`, ` = 1, . . . , L are a focus of inference, we do not impose a prior

distribution on these parameters, but impose the interval [0, 1] for γ`, ` = 1, . . . , L during

MCMC estimation, and also impose
∑L

`=1 γ` = 1, by setting γL = (1 −
∑L−1

`=1 γ`). We

3A value of -1 is often used in practice to ensure the matrix inverse: (In−ρWc(Γ))−1 exists. This has the
advantage that we do not have to calculate the minimum eigenvalue of Wc(Γ) which changes as a function
of the values taken by Γ.
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discuss how proposal values for the vector of parameters Γ are generated later. Given the

limited prior information, the conditional distributions for the parameters β, σ2, ρ,Γ take

the forms described in the following.

The conditional distribution for the parameters β is multivariate normal with mean and

variance-covariance shown in (3).

p(β|σ2, ω, ỹ,X) = N(β̃, Σ̃β) (3)

β̃ = (X ′X)−1(X ′ỹω)

Σ̃β = σ2(X ′X)−1

The conditional posterior for σ2 (given β̃, ω) takes the form in (4), when we set the prior

parameters ā = b̄ = 0.

p(σ2|β, ω, ỹ,X) ∝ (σ2)−(
n
2
)exp

(
− e
′e

2σ2

)
(4)

e = ỹω −Xβ

∼ IG(ã, b̃)

ã = n/2

b̃ = (e′e)/2

The (log) joint posterior for the parameters in ω after integrating out the parameters

β, σ takes the form in (5), where we use ln|D(ω)| to show that the log-determinant term

in this model depends on the parameter vector ω. Details regarding a computationally

efficient approach to calculating the log-determinant term are postponed to the next section.

Further, expression (5) does not reflect a known distribution (as in the case of the conditional

distributions for β and σ2).

ln p(ω|, ỹ, X,W) ∝ ln|D(ω)| − n

2
ln[ω′Fω] (5)

F = (ỹ −Xβd)′(ỹ −Xβd)

βd = (X ′X)−1(X ′ỹ),
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where W = {W` : ` = 1, . . . , L}. We note that F consists of only sample data, so

this expression can be calculated prior to MCMC sampling, leading to a computationally

efficient expression reflecting a quadratic form: ln(ω′Fω), that can be easily evaluated for

any vector of dependence parameters ω.

Recall ω′ = (1, −ργ1, −ργ2, . . . , −ργL), so we sample the parameter ρ from the joint

posterior distribution in (5) conditioning on Γ and similarly for Γ conditioning on ρ. Details

about the sampling procedure are postponed to section 2.3.

2.2 Log-determinants based on trace approximations

Pace and LeSage (2002) set forth a Taylor series approximation for the log-determinant

of a matrix like our expression: ln|D(ω)|. They show that for a symmetric nonnegative

connectivity matrix Wc(Γ) with eigenvalues λmin ≥ −1, λmax ≤ 1, and 1/λmin < ρ < 1, and

tr(Wc(Γ)) = 0 (where tr represents the trace):

ln|D(ω)| = ln|In − ρWc(Γ)| = −
∞∑
j=1

ρj trWc(Γ)j

j
(6)

' −
q∑
j=1

ρjtr(Wc(Γ)j)

j
(7)

Golub and Van Loan (1996, p.566) provide the expression in (6), while Pace and LeSage

(2002) note that due to the linearity of the trace operator we have expression (7). We note

that the 1st-order trace involves tr(Wc(Γ)) which is zero for any convex combination of

weight matrices that have zero diagonal elements.4 The second-order trace can be computed

as in (8).

tr(Wc(Γ)2) =

L∑
i=1

L∑
j=1

γiγj tr(WiWj) (8)

LeSage and Pace (2009) point out that accelerated computation of traces can be accom-

plished using sums of matrix Hadamard products, shown in (9).5

4Since the underlying connectivity matrices W` have zero diagonal elements, a convex combination of
these will also have this property.

5For asymmetric nonnegative connectivity matrices, we use matrix products:
∑L

i

∑L
j Wi �W ′j .
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tr(WiWj) =
N∑
k

N∑
l

wi,klwj,lk (9)

=

L∑
i

L∑
j

Wi �Wj

Note that this formulation separates the parameter vector Γ from the trace of the prod-

uct of matrices, which allows pre-calculation of these traces prior to MCMC sampling.6

Using this approach leads to similar expressions for 3rd- and 4th-order traces, presented in

(10) and (11) respectively.

tr(Wc(Γ)3) =
L∑
i=1

L∑
j=1

L∑
k=1

γiγjγk tr(WiWjWk) (10)

tr(Wc(Γ)4) =
L∑
i=1

L∑
j=1

L∑
k=1

L∑
l=1

γiγjγkγ` tr(WiWjWkWl) (11)

Finally, the Taylor series approximation for the log-determinant term that arises in the

conditional distributions from which we sample the spatial dependence parameter ρ and

parameters γ`, ` = 1, . . . , L is shown in (12).

ln|D(ω)| ' −ρ2 tr(Wc(Γ)2)/2

−ρ3(tr(Wc(Γ)3))/3

−ρ4(tr(Wc(Γ)4))/4 (12)

Section 3 reports results from Monte Carlo experiments that show this approximation

of the log-determinant term works well to produce accurate parameter estimates for the

model as well as good coverage intervals.

6An even more efficient computational expression is (Γ ⊗ Γ)′vec(Q), where Q is the matrix composed of
all the traces to be computed, ⊗ stands for the Kronecker product and vec(Q) is the operator which stacks
the columns of the matrix Q. Of course, to get identical results to (8), we need to arrange the elements of
Q accordingly.
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2.3 Sampling procedures for ρ and Γ

As noted in the introduction, a second computational challenge for MCMC estimation of

the model is sampling parameters in the vector Γ, which must sum to one and cannot be

negative. We set forth a reversible jump approach to block sampling Γ that proposes a

vector of candidate values for γ`, ` = 1, 2, . . . , L− 1, with γL = 1−
∑L−1

`=1 . The conditional

distributions for the current and proposed vectors that we label Γc and Γp are evaluated with

a M-H step used to either accept or reject the newly proposed vector Γp. Block sampling

the parameter vector Γ has the virtue that accepted vectors will obey the summing up

restriction and reduce autocorrelation in the MCMC draws for these parameters. However,

block sampling is known to produce lower acceptance rates which may require more MCMC

draws in order to collect a sufficiently large sample of draws for posterior inference regarding

Γ.

The reversible jump procedure involves (for each γ`, ` = 1, . . . , L − 1) a three-headed

coin flip. By this we mean a uniform random number on the closed interval coin flip =

U(0, 1), with head #1 a value of coin flip ≤ 1/3, head #2 a value in (1/3, 2/3] and head #3

a value > 2/3. Given a head #1 result, we set a proposal for γp` using a uniform random

draw on the interval [0, γc` ), the current value. A head #2 results in setting the proposal

value equal to the current value (γp` = γc` ), while a head #3 selects a proposal value based

on a uniform random draw on the interval (γc` , 1].

Green (1995) proposed the reversible jump MCMC method as a generalization of M-H

for the purpose of sampling from conditional posterior distributions. In our case, we make

a random choice between a new vector that increments some values of γ` and decrements

others. In theory we can produce samples from the correct posterior using just increment

and decrement steps, but adding the third step that leaves a value of γ` unchanged (which we

label a stay step) was found to improve the acceptance rate of the sampler. This finding is

consistent with results in Richardson and Green (1997) and Dennison et al. (2002). Given

equal probabilities and a parameter space that is discrete as opposed to continuous, the

reversible jump procedure from Green (1995) simplifies considerably.

Green (1995) sets forth a general form of acceptance probability shown in (13), where

p(Γp|·) is our conditional distribution, π(Γ) is the prior, Q(Γc|Γp) is the probability of

proposing a decrement (increment, stay), and |J | is a Jacobian term to account for the

10



change in scale that arises if the parameter dimension changes. Since the prior probabilities

are equal, π(Γc)/π(Γp) = 1, the parameter dimension is constant so |J | = 1, and we use equal

probabilities of proposing increments/decrements/stays, the M-H acceptance probability

simplifies to the expression shown in (14). The (non-logged) conditional distributions in

expression (15) are used to calculate a M-H acceptance probability, where we use · to denote

the conditioning parameter (ρ).

ψMH(Γc,Γp) = min{1, p(Γ
p|·)

p(Γc|·)
π(Γp)

π(Γc)

q(Γc|Γp)
q(Γp|Γc)

|J |} (13)

= min{1, p(Γ
p|·)

p(Γc|·)
} (14)

= min (1, exp[(ln p(Γp|·)− ln p(Γc|·)]) (15)

The expression to be evaluated at the current and proposed vectors of parameters Γ con-

sists of two relevant terms, one involving the log-determinant and the other the quadratic

form: ln[ω′Fω], both of these evaluated for the vector of parameters Γ. As already moti-

vated, our fourth-order Taylor series approximation to the log-determinant ln|In− ρWc(Γ)|

can be easily and rapidly calculated for any vector Γ using the pre-calculated traces and

the conditioning parameter ρ. From the expression in (12), it should be clear that we

avoid the need to calculate the n × n matrix Wc(Γ) =
∑L

`=1 γ`W`, which saves on com-

puter memory. A second point is that the quadratic form expression ln[ω′Fω] can be easily

calculated using the pre-calculated expression ỹ = (y W1y W2y . . . WLy) and the vector

ω′ = (1, −ργ1, −ργ2, . . . , −ργL).

After the initial 1,000 draws we switch to a tuned random-walk proposal procedure. This

is needed because proposals from the reversible jump procedure based on the large intervals

between [0, γcj ) and (γcj , 1] will not produce candidates likely to be accepted when these

parameters are estimated with a great deal of precision, as would be the case for problems

involving large sample size. This can result in a failure to move the chain adequately over

the parameter space. To address this issue, standard deviations, σγ(j) for each parameter

j = 1, . . . , L are calculated based on the first 1,000 draws (and thereafter using a rolling

window interval of 1, 000 draws). These are used in a tuned random-walk procedure to

produce candidate/proposal values. Specifically, we use a tuning scalar that is adjusted

based on acceptance rates for the block of parameters Γ. This is used in conjunction with
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the standard deviations and the block sampling procedure described previously to produce

proposals. As already noted, we carry out a series of Monte Carlo experiments in Section 3

that allow us to assess the efficacy of this approach to sampling the parameters γ`.

Finally, the parameter ρ is drawn from the joint distribution for ω shown in (5), condi-

tioning on Γ. We follow LeSage and Pace (2009) and use M-H sampling for this parameter,

based on a normal distribution along with a tuned random-walk procedure to produce can-

didate values for ρ. We further rely on rejection sampling to guarantee that proposed values

belong to the (−1, 1) parameter space.

2.4 Calculating effects estimates

LeSage and Pace (2009) point out that for the case of the SAR model, partial derivatives take

the form in (16) for the rth explanatory variable. They propose scalar summary measures

of the own- and cross-partial derivatives that they label direct and indirect effects, shown

in (17) and (19), where ιn is an n× 1 vector of ones.

∂y/∂xr = = Sr(Wc(Γ)) (16)

Sr(Wc(Γ)) = (In − ρWc(Γ))−1βr

= Inβr + ρWc(Γ)βr + ρ2Wc(Γ)2βr + . . .

M̄(r)direct = n−1tr(Sr(Wc(Γ))) (17)

M̄(r)total = n−1ι′nSr(Wc(Γ))ιn (18)

M̄(r)indirect = M̄(r)total − M̄(r)direct (19)

Wc(Γ) =
L∑
`=1

γ`W`

While expressions in (17), (18) and (19) produce point estimates for the scalar summary

measures of effects (own- and cross-partial derivatives) used to interpret the impact of

changes in explanatory variables on dependent variable outcomes, we also require measures

of dispersion for the purpose of statistical tests regarding the significance of these effects.

Use of an empirical distribution constructed by simulating the non-linear expressions in

(16) using (say 1,000) draws from the posterior distribution of the underlying parameters

ρ, βr, γ`, ` = 1, . . . , L is suggested by LeSage and Pace (2009).
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Note that a naive approach to such a simulation-based empirical distribution would

require calculation of the n × n matrix inverse Sr(Wc(Γ)) a large number of times, for

varying values of the parameters ρ, βr, γ`, ` = 1, . . . , L, which would be computationally

intensive. For the SAR model with only one connectivity matrix, W , LeSage and Pace

(2009) show that the required quantity for constructing the empirical distribution of the

effects is tr(Sr(W )), which can be estimated without a great deal of computational effort.

For the purpose of calculating the effects estimates, LeSage and Pace (2009) set forth a

procedure that relies on a (1× (q+1)) vector R, shown in (20), containing average diagonal

elements from powers of W , and the (1×(q+1)) vector g in (21) and corresponding diagonal

matrix G shown in (22), and (q + 1)× 1 vector of ones ιq+1.
7

R =
(

1 0 tr(W 2)/N tr(W 3)/N . . . tr(W q)/N
)

(20)

g =
(

1 ρ ρ2 . . . ρq
)

(21)

G =



1 0 . . . 0

0 ρ 0 . . . 0

0 0 ρ2 . . . 0
...

. . .

0 . . . ρq


(22)

M̄(r)direct = βrRGιq+1 (23)

M̄(r)total = βrgιq+1 (24)

M̄(r)indirect = M̄(r)total − M̄(r)direct (25)

Given the (pre-calculated) traces, empirical measures of dispersion for the effects can

be constructed using MCMC draws for the parameter ρ in g,G and βr in expressions (23),

(24), where we note that the total effects are the sum of the direct plus indirect effects.

In practice, computational implementations do not actually calculate traces but rather

rely on estimates of these which do not require much computational effort. Specifically,

an iterative procedure is used to produce a Monte Carlo estimate of the traces. A set of

j = 100 iterations shown in (26) involving m = 150 vectors of iid normal deviates v are

7Computational implementations of this approach in the Spatial Econometrics Toolbox and the R−
language Spdep package set q = 100.
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averaged as shown in (27), to produce Monte Carlo estimates of the diagonals, (see Barry

and Pace, 1999).

v(j) = Wv(j−1) (26)

tr(W j) ' (v � v(j))
ιm
m

(27)

Our situation differs because the matrix Wc(Γ) depends on estimated parameters γ`, ` =

1, . . . , L ruling out use of pre-calculated traces. One could rely on posterior means for γ`,

labeled Γ to create a single matrix Wc(Γ), for which pre-calculated traces could be used

in (20). However, this would ignore stochastic variation in the effects estimates that arise

from the fact that there is uncertainty regarding the parameter vector Γ. Ideally, we would

like to use draws for the γ` parameters from their posterior distributions when simulating

the empirical distribution of effects estimates.

We have already calculated the first four order traces to produce the Taylor series

approximation to the log-determinant term. Our approach for efficiently estimating the

empirical distribution for partial derivative effects required for inference involves the follow-

ing steps. We calculate q = 100 estimated traces using Wc(Γ) =
∑L

`=1 γ̄`W` in place of W

in expression (27). The second- through fourth-order (estimated) traces are replaced with

those shown in (9) to (12) during simulation, where MCMC draws for the parameters γ`

are used instead of relying on the posterior mean value of these parameters. Note that this

incorporates uncertainty in the parameters γ` for low-order traces by using MCMC draws

for these parameters. Given that the vector products in (23) and (24) involve increasingly

small magnitudes associated with higher-order powers of the parameters ρ and Γ, low-order

traces are most important for accurate estimates of the effects. With the exception of

modeling situations involving very large negative or positive values of spatial dependence

ρ (say greater than 0.9 in absolute value) which do not arise often in applied practice, this

approach should produce accurate estimates for the effects. The Monte Carlo experiments

carried out in Section 3 will be used to assess the accuracy of our approximation approach

to constructing the effects estimates.
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2.5 Log marginal likelihoods

Calculation of the log marginal likelihood for the convex combination of weight matrices

model would involve integrating the joint posterior distribution over all model parameters.

We can proceed to analytically integrate out the parameters β, and σ2, leading to a (log

kernel) joint posterior for the remaining model parameters in ω that takes the form in (5).

Integrating out the remaining parameters using numerical methods could be computa-

tionally intensive for cases involving a large number of parameters in the vector Γ. Monte

Carlo numerical integration would tackle the problem by sampling a large number of pa-

rameters in ω, but this would be inefficient as many of the samples would reflect areas of

low support in the joint posterior distribution. However, we have a set of draws for the

parameters ω based on Metropolis-Hastings that tune the parameters in the vector ω to

areas of high density in the joint posterior. Evaluating the joint posterior on every trip

through the MCMC sampling loop for the values in the vector ω, allows us to take the

mean of these evaluations to produce a Metropolis-Hastings tuned Monte Carlo estimate of

the (kernel) joint posterior.

We can then add the constants to produce an estimate of the log marginal likelihood.

The constants take the form: κ = −log(1/max ρ− 1/min ρ) + log(Gamma(dof))− dof ×

log(2π), where log(Gamma()) is the log gamma function, and dof are the degrees of freedom

equal to (n − L)/2, where we loose degrees of freedom based on the number of weight

matrices. The (normalized) non-log joint posterior can be calculated in the usual way using

exp[log p(ω)−max(log p(ω))].

To illustrate these ideas, a model was generated based on n = 1, 500 and three con-

nectivity matrices, W1, a two-nearest neighbors connectivity matrix, W2 a three nearest

neighbors connectivity matrix, both based on the same set of random latitude-longitude

coordinates, and W3 a 12 nearest neighbors connectivity matrix based on a different random

set of latitude-longitude coordinates. This results in the matrices W1,W2 being highly cor-

related. The two sets of coordinates have been drawn from standard normal distributions.

We also set γ1 = 0.4, γ2 = 0.2, γ3 = 0.4 and ρ = 0.6. We also considered X = [ιn, X1, X2],

where X1 and X2 come from standard normal distributions and β = [−1,−0.5, 1.5], and an

error term also drawn from a standard normal distribution.

Figure 1 shows the normalized non-logged joint posterior points evaluated during MH-
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MC integration for the parameters γ1, γ2, which are centered on the true values of γ1 =

0.4, γ2 = 0.2, despite the high correlation between the W1,W2 matrices.8 Use of redundant

information in components of the convex combination of connectivity matrices will produce

correlation in the associated parameters γ1, γ2. We might expect to see a high negative

correlation because two highly correlated weight matrices act as substitutes for each other in

the model. Higher values of γ1 that emphasize the role ofW1 are associated with lower values

of γ2 since emphasis on W2 would result in redundant information regarding the spatial

dependence structure. It is also the case that the summing up constraint
∑3

`=1 γ` = 1,

produces a situation where higher values of γ1 that emphasize the role of W1 are associated

with lower values of γ2. In fact, if W1,W2 were perfectly correlated, values of γ1 = 0.6 and

γ2 = 0 would produce the same log-posterior as values of γ1 = 0 and γ2 = 0.6.

Figure 2 shows the joint posterior points evaluated for the parameters γ1, γ3, which

is also centered on the true values of γ1 = 0.4, γ3 = 0.4. Here we see no discernible

correlation between the posterior distribution for values of γ1, γ3 as the matrices W1,W3

reflect independent information.

Figure 3 shows a similar plot of points evaluated by our MH-MC integration scheme for

the joint posterior distribution of the parameters ρ and γ1. By definition, our model implies

correlation between the parameter ρ and values taken by the parameters γ`, ` = 1, . . . , L,

as ω′ = [1, −ργ1, −ργ2, −ρ(1 − γ1 − γ2)]. We see negative covariance between ρ and γ1,

and in Figure 4 positive covariance between ρ, γ3.

2.6 Computational speed

To provide an indication of the computation efficiency of the approach set forth, Table 1

shows the time required to produce model estimates.9 This includes time required to: 1)

pre-calculate the terms used in the fourth-order trace approximation, 2) to produce 20,000,

50,000 and 100,000 MCMC draws, and 3) to calculate effects estimates and the empirical

distribution on which posterior inference would be based.

The results are for a data-generated sample based on three connectivity matrices each

constructed using three independent sets of n × 1 (standard) random normal vectors of

8LeSage and Pace (2014) suggest measuring correlation between spatial weight matrices using a standard
random normal vector u, and constructing vectors W1u,W2u, for which a correlation coefficient can be
calculated. This approach produced a correlation coefficient between W1uW2u equal to 0.8180, whereas
that between W1u and W3u was 0.0516.

9Times reported are for a Dell XPS-15 laptop with Intel i9-8950HK 2.90 GHz CPU and Matlab 2018b.
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latitude-longitude coordinates. The three connectivity matrices were based on 5, 8 and 10

nearest neighbors, and values of γ1 = 0.2, γ2 = 0.5, γ3 = 0.3 were used.

The data generating process for the n × 1 dependent variable vector is: y = (In −

ρWc(Γ))−1
[∑3

k=1Xkβk + ε
]
, where Xk ∼ N(0, 1), k = 1, 2, 3, and the k × 1 vector β =

(1, 0, −1)′, ε ∼ N(0, 1), andWc(Γ) = (0.2W1 + 0.5W2 + 0.3W3). Note that sinceW1, W2, W3

are row-normalized nearest neighbor connectivity matrices, we require the asymmetric con-

nectivity matrix approach to calculating traces.

Table 1: Performance results for 3 W−matrices

Timing in seconds
(Nobs/Draws) 20,000 50,000 100,000
1,000 3.26 6.82 13.34
5,000 10.43 22.44 41.31
10,000 19.67 40.85 76.93
25,000 35.74 62.39 107.76

Times normalized
1,000 1.00 2.08 4.08
5,000 3.19 6.87 12.65
10,000 6.02 12.51 23.55
25,000 10.94 19.10 32.99

The second portion of Table 1 normalizes time required to produce model estimates

relative to the case of N = 1, 000 and 20,000 MCMC draws. From this set of results, we can

divide the last column by the first column to find that a five-fold increase in the number

of draws leads to a four-fold increase in time required for N = 1, 000, with (relative) times

required declining to three for N = 25, 000.

Considering the last row of the relative times divided by the first row shows the impact

of increasing observations 25-fold on time needed to produce estimates. Here we see that for

the case of 20,000 draws, the time increased by 10.9 times in the face of a 25-times increase

in sample size N , and for 50,000 draws time increased by a factor of 9.1 = 19.1/2.08, and

for 100,000 draws by 8.08=32.99/4.08. These results suggest that the estimation procedure

scales very favorably in terms of both the number of MCMC draws and the number of

observations N .

2.7 Bayesian model averaging

Given the speed of estimation for single models and the availability of multi-core computer

architecture, it is possible to estimate models based on all possible combinations of two
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or more spatial connectivity matrices, even in cases of 10 connectivity matrices. During

estimation, log-marginal likelihood estimates would be produced that allow calculation of

posterior model probabilities for the set of M models. Given the non-linear relationship

between the underlying parameters β,Γ, ρ and the scalar summary measures of direct and

indirect effects which are the focus of inference in these models, model averaged estimates

should be constructed by applying model probabilities to the scalar summary estimates of

the direct and indirect effects from each model.

As an illustration, we present in Table 2 the estimation results for all models involving

two or more connectivity matrices using a set of five candidate W−matrices and a sample

of N = 2, 000 observations. The DGP used is shown in (28):

y = (I − ρWc(Γ))−1(Xβ + ε) (28)

where X includes a constant term and 2 standard normal variables, β = (−1, −0.5, 1.5)

and ρ = 0.6. The error term ε is assumed Normally distributed, centered around zero and

with a variance σ2I with σ2 = 3.6061 so that the signal to noise ratio (SNR) of the model

is equal to 0.7. In this paper, we define the SNR following Debarsy and LeSage (2018).

Letting A = (I − ρWc(Γ))−1Xβ, X = [ιn, x1], β = [β0, β1]
′ and B = (I − ρWc(Γ))−1, the

SNR is defined as follows:

SNR =
A′A

A′A+ σ2tr(B′B)

The five candidate W−matrices are all 5 nearest neighbors matrices but constructed

from independent sets of random normal latitude-longitude vectors to ensure they convey

different information content. The true values for γ1 = 0.4, γ2 = 0.3, γ3 = 0.3 were used

with γ4 = γ5 = 0. A set of 60,000 draws were used with the first 10,000 discarded for burn-

in, and thinning of the 50,000 retained draws was used based on every fifth draw producing

a sample of 10,000 draws used for inference.

Estimates for ρ and the parameters Γ for the 26 possible models involving combinations

of 2 or more of the five W−matrices are shown in the upper part of Table 2, along with the

log-marginal likelihood estimate and posterior model probabilities. From the table, we see

that the true model (model #11) that generated the sample data vector y had a posterior

model probability of 92.1%, with model #21 assigned a probability of 4.32% and model #22

a probability of 4.22%. Note that model #21 contains the three true matrices W1,W2,W3

plus W4 with a γ̂5 = 0.0413, and model #22 contains the three true matrices W1,W2,W3
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Table 2: Estimates for 5 candidate W−matrices, M = 26 models, N = 2000.
Models log marginal Prob(mi) ρ γ1 γ2 γ3 γ4 γ5
1 -4875.6523 0.0000 0.4571 0.5764 0.4236 - - -
2 -4883.1403 0.0000 0.4200 0.6301 - 0.3699 - -
3 -4898.1205 0.0000 0.2889 0.9124 - - 0.0876 -
4 -4898.1146 0.0000 0.2886 0.9130 - - - 0.0870
5 -4906.6877 0.0000 0.3464 - 0.5557 0.4443 - -
6 -4920.5532 0.0000 0.2242 - 0.8679 - 0.1321 -
7 -4920.7710 0.0000 0.2192 - 0.8884 - - 0.1116
8 -4928.1271 0.0000 0.1855 - - 0.8378 0.1622 -
9 -4928.3202 0.0000 0.1804 - - 0.8631 - 0.1369
10 -4942.2567 0.0000 0.0118 - - - 0.5106 0.4894
11* -4864.1514 0.9124 0.6036 0.4340 0.3139 0.2521 - -
12 -4878.7224 0.0000 0.4776 0.5467 0.3999 - 0.0534 -
13 -4878.6788 0.0000 0.4782 0.5486 0.3991 - - 0.0523
14 -4886.1738 0.0000 0.4432 0.5902 - 0.3508 0.0590 -
15 -4886.1857 0.0000 0.4434 0.5927 - 0.3484 - 0.0589
16 -4901.1615 0.0000 0.3108 0.8389 - - 0.0805 0.0806
17 -4909.4794 0.0000 0.3731 - 0.5107 0.4071 0.0821 -
18 -4909.7570 0.0000 0.3675 - 0.5194 0.4107 - 0.0698
19 -4923.6178 0.0000 0.2444 - 0.7800 - 0.1220 0.0980
20 -4931.1221 0.0000 0.2035 - - 0.7391 0.1419 0.1189
21 -4867.2008 0.0432 0.6241 0.4168 0.3015 0.2405 0.0413 -
22 -4867.2255 0.0422 0.6259 0.4164 0.3009 0.2408 - 0.0419
23 -4881.7951 0.0000 0.5007 0.5184 0.3791 - 0.0521 0.0504
24 -4889.1943 0.0000 0.4650 0.5591 - 0.3292 0.0555 0.0562
25 -4912.5765 0.0000 0.3933 - 0.4785 0.3785 0.0778 0.0651
26 -4870.1981 0.0022 0.6450 0.4017 0.2882 0.2312 0.0394 0.0394

BMA -4864.4260 1.0000 0.6055 0.4324 0.3127 0.2511 0.0019 0.0019
model 11 -4864.1514 0.9124 0.6036 0.4340 0.3139 0.2521 - -

truth 0.6000 0.4000 0.3000 0.3000 0.0000 0.0000

plus W5 with a γ̂4 = 0.0419, both of which are plausible models to receive some support in

terms of posterior model probabilities.

Table 2 also shows posterior means for a set of model averaged estimates for the param-

eters ρ, γi, i = 1, . . . , 5. These were constructed using the model probabilities to weight the

10,000 retained MCMC draws from each of the 26 models, with posterior means calculated

based on the set of 10,000 probability-weighted draws. We see small values for the BMA

parameters γ4 = 0.0019, γ5 = 0.0019. We can calculate credible intervals for these two

parameters using the distribution of set of 10,000 probability-weighted draws, which would

allow us to determine if estimates for model #11 suffers from problems with inference at the

boundary of the parameter space for Γ. That is, we can use credible intervals for the BMA
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posterior estimates of γ4, γ5 to see if an inference of zero for these parameters is reasonable.

The 0.01 interval for γ4 is 0.0001, and that for γ5 is 0.0013, allowing us to conclude that

these parameters are sufficiently close to zero. to make an inference of zero reasonable.

3 Monte Carlo experiments

To assess the validity of our MCMC estimation scheme a Monte Carlo study was carried

out. This involved 500 experiments with varying sets of true parameter values used to

generate sample data vectors y. A set of three standard normal explanatory variables were

used with associated parameters (β1 = 1.0, β2 = 0.0, β3 = −1.0), with the matrix X fixed

in repeated sampling. Noise variances of σ2 = 1 and σ2 = 10 were used in conjunction with

three values of ρ, equal to (−0.6, 0.2, 0.6). The motivation for a value of ρ = 0.2 is that

these models should perform poorly in the face of weak spatial dependence. Sample sizes

of 500, 1,000 and 5,000 were used in an effort to see if expected asymptotic properties hold

true, with bias and mean-squared error (MSE) shrinking as sample size increases.

A set of 30,000 MCMC draws were used with the first 10,000 discarded for burn-in. In

addition to analyzing estimates for the parameters ρ,Γ, β, σ2, estimates of the direct and

indirect effects associated with the three explanatory variables were also assessed.

Three connectivity matrices were used, based on two, four and six nearest neighbors,

where each connectivity matrix was generated using different sets of standard normal

latitude-longitude coordinates. This produces matrices that are reasonably uncorrelated.

Values for the parameters γ1 = 0.5, γ2 = 0.4, γ3 = 0.1 were used, with the value of 0.1

included because this should be more difficult to accuracy estimate.

Coverage estimates were also produced to see if the 95% credible intervals contained

the true parameters. The percent of times (from the 500 trials) when the true values were

within the 95% intervals was calculated.

We begin with a presentation of the 95% coverage results in Table 3. From the table,

we see good coverage of the true parameter values for all of the 18 different Monte Carlo

scenarios, including the cases where n = 500, ρ = 0.2 and the noise variance was relatively

larger based on σ2 = 10.

Table 4 presents bias results for the 18 Monte Carlo scenarios in the same format as

Table 3. Here we see large bias for the γ3 = 0.1 parameter in situations involving the smaller

20



Table 3: Coverage results for 500 trials

N = 500 N = 1, 000 N = 5, 000
σ2 = 1 ρ = −0.6 ρ = 0.2 ρ = 0.6 ρ = −0.6 ρ = 0.2 ρ = 0.6 ρ = −0.6 ρ = 0.2 ρ = 0.6
Parameters 95% 95% 95% 95% 95% 95% 95% 95% 95%
ρ 0.9660 0.9560 0.9620 0.9520 0.9420 0.9520 0.9420 0.9660 0.9480
β1 0.9580 0.9420 0.9460 0.9340 0.9540 0.9420 0.9460 0.9420 0.9240
β2 0.9500 0.9520 0.9400 0.9660 0.9640 0.9600 0.9680 0.9580 0.9500
β3 0.9500 0.9380 0.9460 0.9580 0.9420 0.9540 0.9500 0.9620 0.9480
γ1 0.9640 0.9620 0.9680 0.9740 0.9540 0.9540 0.9480 0.9500 0.9680
γ2 0.9460 0.9600 0.9540 0.9560 0.9420 0.9420 0.9480 0.9360 0.9540
γ3 0.9860 0.9760 0.9820 0.9700 0.9760 0.9720 0.9660 0.9860 0.9520
direct1 0.9580 0.9400 0.9400 0.9360 0.9540 0.9420 0.9440 0.9420 0.9240
direct2 0.9500 0.9520 0.9400 0.9660 0.9640 0.9600 0.9680 0.9580 0.9500
direct3 0.9440 0.9400 0.9500 0.9620 0.9400 0.9580 0.9460 0.9580 0.9420
indirect1 0.9700 0.9580 0.9660 0.9540 0.9540 0.9520 0.9400 0.9640 0.9520
indirect2 0.9500 0.9640 0.9400 0.9660 0.9640 0.9600 0.9680 0.9580 0.9500
indirect3 0.9520 0.9600 0.9700 0.9540 0.9500 0.9480 0.9440 0.9620 0.9420
total1 0.9400 0.9520 0.9680 0.9440 0.9580 0.9480 0.9500 0.9580 0.9540
total2 0.9500 0.9520 0.9400 0.9660 0.9640 0.9600 0.9680 0.9580 0.9500
total3 0.9680 0.9500 0.9660 0.9560 0.9400 0.9520 0.9520 0.9540 0.9420
σ2 0.9480 0.9620 0.9400 0.9520 0.9640 0.9600 0.9520 0.9540 0.9380

N = 500 N = 1, 000 N = 5, 000
σ2 = 10 ρ = −0.6 ρ = 0.2 ρ = 0.6 ρ = −0.6 ρ = 0.2 ρ = 0.6 ρ = −0.6 ρ = 0.2 ρ = 0.6
Parameters 95% 95% 95% 95% 95% 95% 95% 95% 95%
ρ 0.9500 0.9460 0.9640 0.9660 0.9640 0.9620 0.9420 0.9500 0.9620
β1 0.9440 0.9600 0.9260 0.9480 0.9760 0.9520 0.9620 0.9480 0.9300
β2 0.9520 0.9560 0.9480 0.9620 0.9560 0.9640 0.9460 0.9540 0.9460
β3 0.9720 0.9580 0.9560 0.9520 0.9480 0.9580 0.9420 0.9440 0.9500
γ1 0.9440 0.9740 0.9680 0.9560 0.9520 0.9640 0.9580 0.9460 0.9580
γ2 0.9400 0.9860 0.9560 0.9380 0.9820 0.9440 0.9520 0.9560 0.9600
γ3 0.9740 0.9840 0.9740 0.9780 0.9820 0.9720 0.9680 0.9660 0.9620
direct1 0.9460 0.9600 0.9300 0.9440 0.9740 0.9440 0.9640 0.9480 0.9280
direct2 0.9520 0.9560 0.9480 0.9620 0.9560 0.9640 0.9460 0.9540 0.9460
direct3 0.9760 0.9540 0.9580 0.9520 0.9500 0.9600 0.9400 0.9420 0.9440
indirect1 0.9560 0.9460 0.9780 0.9560 0.9580 0.9660 0.9540 0.9560 0.9600
indirect2 0.9520 0.9720 0.9480 0.9620 0.9640 0.9640 0.9460 0.9540 0.9460
indirect3 0.9620 0.9420 0.9580 0.9560 0.9500 0.9620 0.9480 0.9440 0.9600
total1 0.9500 0.9540 0.9680 0.9480 0.9500 0.9720 0.9400 0.9580 0.9640
total2 0.9520 0.9560 0.9480 0.9620 0.9560 0.9640 0.9460 0.9540 0.9460
total3 0.9740 0.9520 0.9600 0.9560 0.9540 0.9640 0.9480 0.9440 0.9560
σ2 0.9400 0.9660 0.9600 0.9460 0.9360 0.9620 0.9560 0.9440 0.9560

N = 500 sample size, the low ρ = 0.2 value of the spatial dependence parameter and the

larger noise variance of σ2 = 10.

From the first part of the table showing results for the case where σ2 = 1, we see

bias for γ3 of (0.0257, 0.1383, 0.0178) for N = 500 and ρ = (−0.6, 0.2, 0.6) respectively,

which decreases to bias of (0.0122, 0.0866, 0.0073) for N = 1, 000 and further decreases to

bias of (−0.0017, 0.0245,−0.0034) for N = 5, 000. As we would expect, the correspond-
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ing biases for the γ3 parameter are larger for the same scenarios when the noise variance

was increased to σ2 = 10, specifically: (0.0536, 0.1722, 0.0383) for N = 500, which de-

creases to bias of (0.0247, 0.1233, 0.0216) for N = 1, 000 and further decreases to bias of

(0.0032, 0.0427,−0.0017) for N = 5, 000.

Another result from Table 4 is that bias for the indirect and total effects estimates are

largest for values of the spatial dependence parameter ρ = 0.6, which of course produce the

largest indirect and total effects magnitudes. For example, the true total effects magnitudes

for X1, X2, X3 equal 2.5, 0 and -2.5, respectively, for all scenarios This means that bias

magnitudes of 0.18 and -0.18 in the case of σ2 = 1, N = 500 represent 7 percent bias, and

in the worse case scenario where σ2 = 10, N = 500 the bias of 0.34 and -0.34 is around 14

percent.

Summarizing our Monte Carlo results regarding bias, it may be difficult to draw accurate

inferences regarding models involving convex combinations of connectivity matrices in cases

where the sample size is small (e.g., N = 500) and some of the connectivity matrices are

relatively unimportant, e.g., γ = 0.1. It is important to note that accuracy of inferences

would also depend on: signal-to-noise ratios, the strength of spatial dependence, as well as

the amount of correlation between connectivity matrices considered.

Table 5 presents mean-squared error (MSE) results for the 18 Monte Carlo scenarios

in the same format as the previous tables. Here we see the largest MSE for the indirect

and total effects parameters, which are non-linear functions of the underlying parameters

ρ,Γ, β. Errors made in estimates of these parameters becomes magnified by the matrix

inverse (In − ρWc(Γ))−1, which should be clear from the series expansion of this inverse:

(In−ρWc(Γ))−1 = In+ρWc(Γ)+ρ2Wc(Γ)2+ρ3Wc(Γ)3+ . . ., where the worse case scenarios

involve the smaller sample size of N = 500, with MSE decreasing as sample size increases

(ceteris paribus). We should also keep in mind the larger magnitudes of the indirect and

total effects scalar summaries for cases where ρ = 0.6.

4 An applied illustration

To illustrate the method we estimate a hedonic house price regression using a sample of

72,241 homes sold in the state of Ohio during the year 2000. The data is described in

Brasington and Haurin (2006); Brasington (2007) and Brasington and Hite (2008). The
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Table 4: Bias results for 500 trials

N = 500 N = 1, 000 N = 5, 000
σ2 = 1 ρ = −0.6 ρ = 0.2 ρ = 0.6 ρ = −0.6 ρ = 0.2 ρ = 0.6 ρ = −0.6 ρ = 0.2 ρ = 0.6
Parameters bias bias bias bias bias bias bias bias bias
ρ -0.0068 0.0080 0.0091 -0.0062 0.0027 0.0010 0.0034 0.0022 0.0012
β1 0.0006 -0.0018 -0.0010 -0.0013 -0.0034 -0.0004 0.0006 0.0000 -0.0005
β2 -0.0020 0.0016 0.0032 0.0023 0.0004 -0.0026 -0.0003 -0.0002 -0.0003
β3 -0.0011 -0.0026 -0.0014 0.0019 0.0022 -0.0017 0.0003 0.0002 0.0010
γ1 -0.0061 -0.0677 -0.0069 -0.0049 -0.0293 -0.0005 0.0018 -0.0041 0.0017
γ2 -0.0196 -0.0706 -0.0109 -0.0073 -0.0572 -0.0068 -0.0002 -0.0205 0.0017
γ3 0.0257 0.1383 0.0178 0.0122 0.0866 0.0073 -0.0017 0.0245 -0.0034
direct1 0.0011 -0.0011 0.0002 -0.0004 -0.0031 0.0001 0.0004 0.0001 0.0001
direct2 -0.0021 0.0016 0.0034 0.0023 0.0004 -0.0027 -0.0003 -0.0002 -0.0003
direct3 -0.0017 -0.0033 -0.0027 0.0010 0.0019 -0.0023 0.0005 0.0001 0.0005
indirect1 -0.0010 0.0293 0.1786 -0.0015 0.0111 0.0583 0.0016 0.0052 0.0198
indirect2 0.0009 0.0007 0.0071 -0.0009 0.0000 -0.0038 0.0001 -0.0001 -0.0003
indirect3 0.0013 -0.0297 -0.1827 0.0013 -0.0115 -0.0601 -0.0020 -0.0052 -0.0193
total1 0.0001 0.0282 0.1789 -0.0019 0.0080 0.0584 0.0020 0.0053 0.0199
total2 -0.0011 0.0023 0.0104 0.0014 0.0004 -0.0065 -0.0002 -0.0003 -0.0006
total3 -0.0003 -0.0330 -0.1854 0.0023 -0.0096 -0.0624 -0.0014 -0.0050 -0.0189
σ2 0.0017 0.0022 0.0015 0.0022 0.0020 -0.0009 0.0002 0.0021 -0.0020

N = 500 N = 1, 000 N = 5, 000
σ2 = 10 ρ = −0.6 ρ = 0.2 ρ = 0.6 ρ = −0.6 ρ = 0.2 ρ = 0.6 ρ = −0.6 ρ = 0.2 ρ = 0.6
Parameters bias bias bias bias bias bias bias bias bias
ρ -0.0087 0.0049 0.0114 -0.0122 0.0077 0.0051 0.0009 0.0058 0.0020
β1 0.0012 -0.0101 0.0012 0.0014 -0.0030 -0.0062 0.0002 -0.0009 0.0027
β2 0.0058 -0.0028 -0.0098 0.0104 0.0051 0.0021 0.0010 -0.0000 -0.0003
β3 -0.0021 -0.0114 -0.0003 -0.0057 0.0028 0.0046 0.0012 0.0012 0.0016
γ1 -0.0176 -0.1072 -0.0160 -0.0074 -0.0651 -0.0014 -0.0003 -0.0143 0.0011
γ2 -0.0360 -0.0650 -0.0223 -0.0173 -0.0582 -0.0202 -0.0029 -0.0285 0.0006
γ3 0.0536 0.1722 0.0383 0.0247 0.1233 0.0216 0.0032 0.0427 -0.0017
direct1 0.0015 -0.0087 0.0029 0.0032 -0.0022 -0.0054 0.0000 -0.0006 0.0037
direct2 0.0060 -0.0028 -0.0104 0.0109 0.0051 0.0022 0.0011 -0.0000 -0.0004
direct3 -0.0026 -0.0130 -0.0017 -0.0077 0.0020 0.0038 0.0014 0.0010 0.0008
indirect1 0.0007 0.0394 0.3380 -0.0047 0.0277 0.1347 0.0010 0.0121 0.0416
indirect2 -0.0022 0.0013 -0.0207 -0.0045 0.0016 0.0029 -0.0004 0.0002 0.0000
indirect3 0.0001 -0.0449 -0.3340 0.0067 -0.0261 -0.1367 -0.0016 -0.0120 -0.0355
total1 0.0022 0.0307 0.3409 -0.0015 0.0255 0.1294 0.0011 0.0115 0.0453
total2 0.0038 -0.0015 -0.0311 0.0064 0.0066 0.0051 0.0007 0.0001 -0.0003
total3 -0.0025 -0.0579 -0.3357 -0.0011 -0.0241 -0.1330 -0.0002 -0.0110 -0.0347
σ2 0.0331 0.0094 -0.0116 -0.0106 -0.0006 0.0362 -0.0007 0.0071 -0.0006

initial database includes 120,700 houses but we only consider homes with at least one

bedroom and bath, less than 9 bedrooms, more than 200 square foot of living area and

more than 500 square foot lotsize leading to a sample size of 111,622. Further, the sample

has been checked to ensure the presence of twenty nearest neighboring homes within two

miles of each home that had the same number of bedrooms, same number of full plus half
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Table 5: Mean-squared error results for 500 trials

N = 500 N = 1, 000 N = 5, 000
σ2 = 1 ρ = −0.6 ρ = 0.2 ρ = 0.6 ρ = −0.6 ρ = 0.2 ρ = 0.6 ρ = −0.6 ρ = 0.2 ρ = 0.6
Parameters MSE MSE MSE MSE MSE MSE MSE MSE MSE
ρ 0.0041 0.0040 0.0029 0.0025 0.0019 0.0016 0.0006 0.0004 0.0004
β1 0.0018 0.0019 0.0018 0.0011 0.0010 0.0011 0.0002 0.0002 0.0002
β2 0.0021 0.0021 0.0020 0.0009 0.0010 0.0010 0.0002 0.0002 0.0002
β3 0.0022 0.0021 0.0021 0.0011 0.0011 0.0011 0.0002 0.0002 0.0002
γ1 0.0032 0.0151 0.0022 0.0017 0.0104 0.0013 0.0004 0.0028 0.0003
γ2 0.0037 0.0147 0.0024 0.0017 0.0129 0.0013 0.0004 0.0035 0.0003
γ3 0.0029 0.0254 0.0022 0.0019 0.0124 0.0015 0.0006 0.0029 0.0005
direct1 0.0020 0.0019 0.0021 0.0012 0.0010 0.0012 0.0002 0.0002 0.0003
direct2 0.0023 0.0021 0.0023 0.0010 0.0010 0.0011 0.0002 0.0002 0.0002
direct3 0.0024 0.0022 0.0024 0.0012 0.0011 0.0011 0.0002 0.0002 0.0002
indirect1 0.0012 0.0116 0.1906 0.0007 0.0050 0.0749 0.0002 0.0010 0.0168
indirect2 0.0004 0.0002 0.0058 0.0002 0.0001 0.0024 0.0000 0.0000 0.0004
indirect3 0.0014 0.0113 0.1957 0.0007 0.0052 0.0717 0.0002 0.0010 0.0176
total1 0.0015 0.0156 0.2025 0.0009 0.0064 0.0822 0.0002 0.0013 0.0177
total2 0.0008 0.0033 0.0152 0.0003 0.0016 0.0067 0.0001 0.0003 0.0012
total3 0.0015 0.0145 0.2111 0.0009 0.0073 0.0762 0.0002 0.0014 0.0190
σ2 0.0041 0.0038 0.0041 0.0021 0.0018 0.0018 0.0005 0.0004 0.0004

N = 500 N = 1, 000 N = 5, 000
σ2 = 10 ρ = −0.6 ρ = 0.2 ρ = 0.6 ρ = −0.6 ρ = 0.2 ρ = 0.6 ρ = −0.6 ρ = 0.2 ρ = 0.6
Parameters MSE MSE MSE MSE MSE MSE MSE MSE MSE
ρ 0.0081 0.0080 0.0052 0.0040 0.0040 0.0030 0.0011 0.0009 0.0008
β1 0.0187 0.0165 0.0190 0.0103 0.0086 0.0103 0.0021 0.0022 0.0023
β2 0.0196 0.0177 0.0196 0.0098 0.0095 0.0088 0.0019 0.0022 0.0021
β3 0.0171 0.0197 0.0198 0.0100 0.0108 0.0102 0.0019 0.0020 0.0021
γ1 0.0062 0.0222 0.0039 0.0028 0.0155 0.0021 0.0008 0.0048 0.0006
γ2 0.0080 0.0128 0.0047 0.0035 0.0140 0.0026 0.0008 0.0055 0.0005
γ3 0.0068 0.0370 0.0041 0.0031 0.0209 0.0025 0.0010 0.0048 0.0008
direct1 0.0202 0.0168 0.0214 0.0111 0.0088 0.0113 0.0023 0.0022 0.0025
direct2 0.0213 0.0180 0.0218 0.0107 0.0096 0.0099 0.0021 0.0022 0.0023
direct3 0.0188 0.0200 0.0220 0.0109 0.0109 0.0113 0.0021 0.0020 0.0023
indirect1 0.0049 0.0269 0.5831 0.0026 0.0118 0.1845 0.0006 0.0023 0.0386
indirect2 0.0034 0.0022 0.0636 0.0018 0.0008 0.0257 0.0003 0.0002 0.0046
indirect3 0.0051 0.0279 0.6054 0.0027 0.0112 0.1882 0.0006 0.0023 0.0383
total1 0.0089 0.0550 0.6805 0.0048 0.0271 0.2247 0.0011 0.0057 0.0485
total2 0.0077 0.0312 0.1558 0.0038 0.0157 0.0662 0.0007 0.0035 0.0134
total3 0.0078 0.0614 0.7025 0.0045 0.0267 0.2284 0.0009 0.0054 0.0476
σ2 0.4170 0.3584 0.4157 0.2220 0.2176 0.2015 0.0394 0.0411 0.0432

baths and same age category, leading to the final sample size.10

The dependent variable is the (logged) selling price, with two explanatory variables:

log(total living area) (in square feet), log(lot size) (in square feet). Typically, house charac-

teristics such as bedrooms, baths and house age are used as explanatory variables in hedonic

10Full plus half baths were assigned a value equal to the # of full + 0.5 x # of half-baths. So, a home with
one full plus two half baths has a value of 2 (equal to two full baths), and so on. House age was specified
as six categorical variables, 0 to ≤ 5 years (new homes up to those less than or equal to 5 years old), 6 to
≤ 10 years, 11 to ≤ 20 years, 21 to ≤ 50 years, 51 to ≤ 100 years, and more than 100 years.
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house price regressions. We take a different approach and use these variables to specify a set

of alternative connectivity matrices. The motivation for this approach is that the conven-

tional spatial autoregressive hedonic house price regression uses a spatial lag of prices from

nearby homes as a way to approximate prices of comparable homes, and then treats house

characteristics such as bedrooms, baths and house age as resulting in an adjustment to

selling prices. For example, an additional bath room or bedroom adds some dollar amount

to the selling price, while a home that is one year older would adjust selling price downward.

This type of model specification envisions that these individual house characteristics can

be adjusted in a ceteris paribus fashion, each contributing to a partial derivative impact on

selling price.

Our use of these characteristics to form a convex combination of connectivity matrices,

treats the characteristics as reflecting a more composite notion that we label house design.

House design is the basis on which buyers’ identify comparable homes in their search for a

home. Since the conventional spatial lag of nearby home selling prices is an approximation

used to identify comparable homes on which selling price of each home is dependent, our

approach could be viewed as an attempt to improve on identifying comparable homes on

which selling price of each home is dependent. As such, if our approach is successful, we

would expect to see a higher level of dependence between homes and the autoregressive

lag of selling prices based on the convex combination. Intuitively, a convex combination

based on houses with similar characteristics should better capture selling prices of truly

comparable nearby homes. This is because comparability reflects design aspects of homes

that buyers care about, not merely selling prices based purely on proximate location. The

higher level of dependence also implies that we would see larger indirect/spillover effects for

the model that uses connectivity matrices reflecting design aspects of homes. This is because

homes that are comparable in design reflect the true basis for buyers relative assessment

of willingness to pay comparable prices for comparable homes. In addition, we might see a

denser weight matrix arising from the convex combination approach, which would also lead

to larger spatial spillovers, because these are calculated as an average of the cumulative

off-diagonal elements of the n× n matrix of partial derivatives, which are used to produce

the scalar summary measures of indirect effects.

Three connectivity matrices were constructed to reflect the nearest neighboring homes

that potential buyers would view as similar along three dimensions. Specifically, the nearest
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homes (within two miles) with the same number of bedrooms (Wbeds), the nearest neigh-

boring homes with the same number of full plus half-baths (Wbaths), and the nearest homes

in the same age category (Wage). The notion is that buyers interested in a home (say i)

would consider a nearby home (say j) having the same number of bedrooms, same number

of baths and similar age/vintage as comparable in design. Buyers would view homes nearby

that did not have a similar number of beds, baths or house age in their search for a home

as not truly comparable.

Of course, there is the question of how many nearest neighboring homes should be used

to construct the convex combination of connectivity matrices Wc = γ1Wbeds + γ2Wbaths +

(1 − γ1 − γ2)Wage, which can be answered using estimated log-marginal likelihoods and

associated model probabilities. Table 6 shows the results of these calculations, which point

to a connectivity matrix Wc based on 13 and 14 nearest neighbors, with posterior model

probabilities around 0.4 and 0.6 for each of these, respectively.

Table 6: Model probabilities for models specified using Wc matrices based on 1 to 20 nearest
neighboring homes

# neighbors log-marginal Model
likelihood Probabilities

1 -35025.9895 0.0000
2 -30157.3407 0.0000
3 -27684.9541 0.0000
4 -26348.3103 0.0000
5 -25451.7446 0.0000
6 -24932.3331 0.0000
7 -24588.6900 0.0000
8 -24335.3919 0.0000
9 -24166.4961 0.0000
10 -24051.4890 0.0000
11 -23992.3770 0.0000
12 -23973.5062 0.0000
13 -23962.5622 0.3977
14 -23962.1472 0.6023
15 -23999.7432 0.0000
16 -24043.4207 0.0000
17 -24102.7456 0.0000
18 -24150.1208 0.0000
19 -24209.2275 0.0000
20 -24259.4974 0.0000
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A question of interest is how similar connectivity matrices based on alternative numbers

of nearest neighbors such as 13 and 14 nearest homes having the same number of bedrooms,

baths and age category are. LeSage and Pace (2014) propose a measure of similarity for

alternative connectivity matrices, that involves multiplication of each n × n matrix with

the same n× 1 random normal vector (ν) to produce vectors Wbedsν, Wbathsν, Wageν. The

correlation between these vectors can then be used to judge similarity. Two correlation

matrices based on 13 and 14 nearest neighboring homes are shown in Table 7, where we

see correlations around 0.5 for spatial lag vectors Wbedsν and Wbathsν and a slightly higher

correlation of 0.535 between spatial lag vectors Wbathsν and Wageν. Hence,the neighbors

based on common number of bedrooms, baths or of similar age are not the same.

Table 7: Correlation of Wbedsν, Wbathsν, Wageν

13 neighbors Wbeds Wbaths Wage

Wbeds 1.0000
Wbaths 0.4961 1.0000
Wage 0.5179 0.5356 1.0000

14 neighbors Wbeds Wbaths Wage

Wbeds 1.0000
Wbaths 0.4937 1.0000
Wage 0.5139 0.5345 1.0000

A related question is the similarity of these types of connectivity matrices with the con-

ventional spatial connectivity matrix based on 13 or 14 geographically nearest neighboring

homes. Correlations between the spatial lag vector Wspaceν and those constructed using

13 and 14 nearest neighboring homes with the same number of bedrooms, baths and age

category are shown in Table 8. We see that the highest correlation between the spatial

lag vector Wspaceν is with Wageν, indicating spatial clustering of homes of the same vin-

tage/age, which is not surprising given that homes in a given neighborhood are frequently

built around the same time. These results point to the inherent truth that homes located

nearby tend to be similar in design, which of course accounts for the past success of spatial

lags of house prices working well in spatial autoregressive hedonic house price regressions

to approximate comparable homes.

Table 9 reports estimation results for a model based on the conventional spatial connec-

tivity matrix constructed using 14 nearest homes along with estimates based on the convex
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Table 8: Correlation of Wspaceν, Wbedsν, Wbathsν Wageν

13 neighbors Wspace Wbeds Wbaths Wage

Wspace 1.0000
Wbeds 0.5942 1.0000
Wbaths 0.6395 0.5085 1.0000
Wage 0.7406 0.5350 0.5482 1.0000

14 neighbors Wspace Wbeds Wbaths Wage

Wspace 1.0000
Wbeds 0.5927 1.0000
Wbaths 0.6382 0.5081 1.0000
Wage 0.7385 0.5309 0.5441 1.0000

combination of Wc = γ1Wbeds + γ2Wbaths + (1− γ1 − γ2)Wage. Of course, this ignores pos-

terior probability support of 39.77 percent for the model specification based on 13 nearest

neighboring homes, about which we have more to say later.

Table 9: SAR model hedonic house price regressions (14 neighbors)

Wspace Wc = [Wbeds,Wbaths,Wage]
Lower Posterior Upper Lower Posterior Upper

Estimates (variable) 0.01 median 0.99 0.01 median 0.99

Constant -0.5336 -0.4720 -0.4127 -0.5991 -0.5393 -0.4811
β(log(TLA)) 0.3941 0.4035 0.4117 0.2974 0.3065 0.3152
β(log(lotsize)) 0.0576 0.0617 0.0656 0.0582 0.0622 0.0669
ρ(Wy) 0.7323 0.7395 0.7461 0.7992 0.8055 0.8131

γ1(Wbeds) - 0.1714 0.1915 0.2112
γ2(Wbaths) - 0.3543 0.3755 0.3948
γ3(Wage) - 0.4117 0.4328 0.4533

Direct(log(TLA)) 0.4164 0.4261 0.4346 0.3200 0.3291 0.3384
Direct(log(lotsize)) 0.0608 0.0651 0.0693 0.0625 0.0668 0.0717
Indirect(log(TLA)) 1.0841 1.1223 1.1614 1.1945 1.2471 1.3108
Indirect(log(lotsize)) 0.1588 0.1715 0.1843 0.2347 0.2535 0.2715
Total(log(TLA)) 1.5042 1.5485 1.5904 1.5176 1.5761 1.6431
Total(log(lotsize)) 0.2199 0.2366 0.2536 0.2979 0.3203 0.3420

Log-marginal likelihood -29480.17 -26287.88

The results based on a conventional spatial weight matrix constructed using the nearest

14 homes and the convex combination model based on a convex combination of weights

constructed using nearby homes having the same number of bedrooms, bathrooms and

house age are different in terms of the direct, indirect and total effects. Estimates for
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the parameters γ1, γ2, γ3 indicate that house age is the most important characteristic, with

bathrooms next most important and bedrooms least important. Given the lower 0.01 and

upper 0.99 credible intervals, these differences in the relative importance of house age,

bathrooms and bedrooms are significant.

In addition, the lower 0.01 and upper 0.99 credible intervals point to a significant dif-

ference between the direct effects of TLA from the two models. Specifically, a 10 percent

increase in living area (TLA) would result in a 4.2 percent higher price in the case of the

spatial neighbors specification, but only a 3.29 percent higher price for the convex combi-

nation model. Also, the spillover (indirect) effects associated with the 10 percent increase

in TLA are larger for the convex combination model, implying a 12.471 percent increase in

selling price versus an 11.223 percent higher price in the case of changes in TLA when the

interaction scheme is solely based on geographic neighbors. These results accord with the

motivation given earlier that better identification of comparable homes results in a higher

level of dependence, with a median value ρ = 0.8055 for the convex combination model

versus ρ = 0.7395 for the spatial neighbors model. Of course, this leads to larger indirect or

spillover effects, associated with the impact of home prices from the set of more comparable

homes identified by the convex combination model. As noted earlier, larger spillover esti-

mates may also arise because the convex combination model weight matrix is denser than

the spatial weight matrix.11 It is also the case that the log-marginal likelihood shows an

improvement for the convex combination model relative to that based on spatial proximity

weights.

In the case of the elasticity response of selling price to changes in lotsize, we see no

significant difference in the direct effect, but there is a significant difference in the indirect

effects. Here again, given the higher level of dependence, we would expect to see a larger

indirect effect of lotsizes from more comparable homes on the selling prices. The significant

difference in indirect lotsize effects estimates from the two specifications lead to a significant

difference in the total effect of lotsize for the two specifications, with those from the convex

combination model being larger.

11A check of non-zero off-diagonal elements from the two weight matrices showed this was indeed the case.
For example, in the case of a 14 neighbors convex combination weight matrix the average number of non-zero
off-diagonal elements was 25, versus 14 for the spatial weight matrix based on 14 nearest neighbors.
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Accounting for model uncertainty

The estimates presented in the previous section rely on connectivity matrix specifications

constructed from 14 nearest neighboring homes, whereas the log-marginal likelihood calcu-

lations showed support for models based on both 13 and 14 nearest neighbors. The Bayesian

solution to this type of model uncertainty is to produced estimates based on both model

specifications and weight the estimates using posterior model probabilities. Using a convex

combination of six connectivity matrices, three based on Wbeds, Wbaths and Wage formed

using 13 nearest neighboring homes, and another three based on 14 nearest neighboring

homes comparable in these characteristics, we have M = 2L −L− 1 = 57 different models.

Table 10 shows log-marginal likelihoods for 14 of these 57 models that have posterior

probabilities greater than 0.001. Estimates for the parameters γ1 to γ6 associated with each

of these models are also shown in the table, along with model averaged estimates for these

parameters.

Table 10: Model probabilities for models specified using Wc matrices based on 13 and 14
nearest neighboring homes

Models
log-marginal Model 13 nearest neighbors 14 nearest neighbors

likelihood probs. Wbeds Wbaths Wage Wbeds Wbaths Wage

Model 1 -23956.384 0.001 0.194 0.000 0.000 0.000 0.375 0.431
Model 2 -23956.232 0.001 0.116 0.220 0.165 0.079 0.156 0.265
Model 3 -23955.763 0.002 0.130 0.242 0.000 0.065 0.136 0.429
Model 4 -23955.671 0.003 0.115 0.375 0.143 0.082 0.000 0.286
Model 5 -23955.550 0.003 0.000 0.250 0.000 0.192 0.128 0.430
Model 6 -23955.246 0.004 0.194 0.000 0.185 0.000 0.374 0.247
Model 7 -23954.977 0.005 0.000 0.233 0.171 0.192 0.144 0.259
Model 8 -23954.401 0.009 0.124 0.376 0.000 0.072 0.000 0.429
Model 9 -23953.866 0.016 0.000 0.375 0.161 0.195 0.000 0.270
Model 10 -23953.432 0.024 0.000 0.377 0.000 0.194 0.000 0.429
Model 11 -23952.038 0.097 0.193 0.210 0.161 0.000 0.168 0.268
Model 12 -23951.813 0.121 0.195 0.375 0.136 0.000 0.000 0.294
Model 13 -23951.583 0.153 0.194 0.232 0.000 0.000 0.146 0.429
Model 14 -23950.283 0.560 0.196 0.376 0.000 0.000 0.000 0.428

BMA -23951.110 - 0.185 0.334 0.037 0.010 0.042 0.392

From the table we see that the highest probability model assigns non-zero γ estimates to

Wage based on 14 nearest neighboring homes, Wbaths and Wbeds based on 13 nearest neigh-

boring homes, which accounts for 56% of the posterior probability mass. Model averaged

estimates assign small probabilities to Wage based on 13 neighbors, and Wbeds and Wbaths

based on 14 neighbors, accounting for model uncertainty regarding weights based on 13 and
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14 nearest neighboring homes. The pattern of γ estimates is such that the largest weight

is assigned to Wage(γ = 0.392) based on 14 neighbors, then Wbaths(γ = 0.334) based on 13

neighbors and finally Wbeds(γ = 0.185) constructed from 13 neighbors. These results are

in general agreement with those shown in Table 9, where the most weight is assigned to

Wage, (γ = 0.4328), then Wbaths(γ = 0.3755) and finally Wbeds(γ = 0.1915).

Table 11: SAR convex model versus BMA convex model estimates

14 neighbors 13 and 14 neighbors
Lower Posterior Upper Lower Posterior Upper

Estimates(variable) 0.01 median 0.99 0.01 median 0.99

Constant -0.5991 -0.5393 -0.4811 -0.5586 -0.5236 -0.4847
β(log(TLA)) 0.2974 0.3065 0.3152 0.3015 0.3070 0.3125
β(log(lotsize)) 0.0582 0.0622 0.0669 0.0596 0.0620 0.0644
ρ(Wy) 0.7992 0.8055 0.8131 0.8000 0.8041 0.8083

γ1(Wbeds,13NN ) - 0.1722 0.1846 0.1961
γ2(Wbaths,13NN ) - 0.3098 0.3341 0.3573
γ3(Wage,13NN ) - 0.0172 0.0369 0.0584
γ4(Wbeds,14NN ) 0.1714 0.1915 0.2112 0.0093 0.0104 0.0115
γ5(Wbaths,14NN ) 0.3543 0.3755 0.3948 0.0221 0.0424 0.0641
γ6(Wage,14NN ) 0.4117 0.4328 0.4533 0.3680 0.3918 0.4146

Direct(log(TLA)) 0.3200 0.3291 0.3384 0.3247 0.3305 0.3361
Direct(log(lotsize)) 0.0625 0.0668 0.0717 0.0642 0.0667 0.0694
Indirect(log(TLA)) 1.1945 1.2471 1.3108 1.2040 1.2358 1.2669
Indirect(log(lotsize)) 0.2347 0.2535 0.2715 0.2385 0.2499 0.2606
Total(log(TLA)) 1.5176 1.5761 1.6431 1.5301 1.5667 1.5990
Total(log(lotsize)) 0.2979 0.3203 0.3420 0.3029 0.3167 0.3298

Log-marginal likelihood -26287.88 -23951.110

Table 11 shows a comparison of the convex combination SAR model estimates based

on 14 neighboring homes and the BMA estimates that include both 13 and 14 neighboring

homes. We see that estimates and inferences regarding the direct and indirect effects are very

similar, despite the fact that the log-marginal likelihood for the model averaged estimates

is higher than that for the simpler convex combination model based only on 14 nearest

neighbors. These results indicate that further refinement of the nature of the weight matrix

do not have a material impact on ultimate estimates and inferences, because conclusions

drawn based on the model using only 14 nearest neighboring homes are robust to any

model uncertainty regarding use of 13 or 14 nearest neighbors. This type of finding is

consistent with what LeSage and Pace (2014) label The biggest myth in spatial econometrics,
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estimates and inferences should not change dramatically when (small) refinements of the

weight structure are made to a weight matrix that exhibits good model fit.

5 Conclusion

We consider estimating spatial regression models that utilize convex combinations of con-

nectivity structures that expand on conventional approaches based only on spatial proximity

of observations. Debarsy and LeSage (2018) argue that models constructed using a convex

combination of weight matrices to form a single linear combination of alternative weight

structures hold intuitive appeal. These models allow us to extend the types of cross-sectional

dependence modeled using spatial regression methods, beyond conventional spatial depen-

dence.

The convex combination of connectivity matrices model specification raises the question

of which matrices should be used and which should be ignored. We show how Metropolis-

Hastings guided Monte Carlo integration can be used during MCMC estimation of the

models to produce estimates of log-marginal likelihoods and associated posterior model

probabilities for alternative models, which allows for Bayesian model averaged estimates.

We focus on challenges for estimation and inference that arise for this type of model

where the weight matrix Wc is a function of estimated parameters γ`. One is that the

log-determinant term that arises in the likelihood cannot be pre-calculated over a range

of values for the spatial dependence parameter as is conventionally done in single weight

matrix spatial regression models. A second issue relates to dealing with the restrictions

imposed on the parameters γ`: 0 ≤ γ` ≤ 1, ` = 1, . . . , L and
∑L

`=1 γ` = 1. A final challenge

arises when calculating measures of dispersion for the partial derivatives ∂y/∂x that LeSage

and Pace (2009) label effects estimates. An empirical measure of dispersion for the effects is

typically constructed by evaluating the partial derivatives using a large number (say 1,000)

of draws for the parameters. The matrix expression for the partial derivatives involves the

inverse of an n×n matrix for which LeSage and Pace (2009) propose a trace approximation

that estimates main diagonal elements of the matrix inverse required to calculate effects

estimates.

We modify earlier work by Pace and LeSage (2002) that relies on a Taylor series ap-

proximation to the log-determinant involving matrices of pre-calculated traces based on the
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L underlying weight matrices to address the first issue. The second issue is resolved using

a reversible jump MCMC block sampling scheme for the parameters γ`, ` = 1, . . . , L that

proposes a block of candidate values for γ` that obey the restrictions. The block of param-

eters is accepted or rejected in a Metropolis-Hastings step, meaning that the parameters

γ` always obey the restrictions. The third problem is solved using exact pre-calculated

traces in conjunction with stochastic estimates of higher-order traces, which allows for an

extension of the method from LeSage and Pace (2009) that avoids calculation of the matrix

inverse.

Our computational approach allows a large number of MCMC draws to be carried out

in very little time. Computational speed is required when estimating these models because

a large number of draws are required to adequately estimate the parameters that act as

weights in the linear combination of matrices, due to low Metropolis-Hastings acceptance

rates.

Results from a Monte Carlo study show that our method produces estimates with small

bias and mean-squared errors, as well as good coverage for the parameters as well as the

direct and indirect effects. LeSage and Pace (2017) point out that past Monte Carlo studies

in spatial econometrics have largely ignored coverage of true values of the parameters by

the empirical measures of dispersion used for inference regarding the direct and indirect

effects.

An applied illustration of our model shows that spatial hedonic house price regressions

that rely on the conventional spatial weight matrix that relates selling prices of homes to

those located nearby in space can be improved by taking into consideration design charac-

teristics of homes located nearby. Homes located nearby of similar age, bedrooms and baths

can be viewed as comparable in terms of design, and better model the relevant neighborhood

buyers (or real estate appraisers) consider to compare house prices.
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Figures

Figure 1: Joint posterior points for γ1, γ2
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Figure 2: Joint posterior points for γ1, γ3
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Figure 3: Joint posterior points for γ1, ρ
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Figure 4: Joint posterior points for γ3, ρ
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