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Abstract 

Unlike most previous research, which has focused on estimating carbon shadow prices at 

regional or sectoral levels, this paper attempts to estimate carbon shadow prices at a 

worldwide level. A non-parametric robust framework estimates carbon shadow prices for 

119 countries from all continents in 12 large groups. Our empirical results reveal that the 

global carbon shadow price is increasing by around 2.24% per annum and reached 2845 US 

dollars per ton in 2011. Regional carbon shadow prices present significant disparities and 

evolve within different categories over the analyzed period. We find a substantial sigma 

convergence process of carbon shadow prices among countries during 1990–2007 while 

divergence appears after the global financial crisis. We then analyze the relationship 

between carbon shadow prices and the implementation of the Kyoto Protocol. 
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1. Introduction 

 

According to record of the U.S. National Centers for Environmental Information, 2014 

was the warmest year ever, globally. Global warming threatens the survival of people all 

over the world, and scientists attribute climate change to emissions of greenhouse gases, 

such as carbon dioxide emissions. Carbon emissions have no real prices, but the opportunity 

costs for producers can be shown by carbon shadow prices—the amount of revenue that 

producers have to give up for a certain amount of carbon emission abatement—which 

provides useful information for environmental regulators. Nowadays, governments make 

great efforts to reduce carbon emissions and carry out different pricing approaches for 

carbon taxes. A popular approach is to set a gradually decreasing upper limit on carbon 

emissions and to allow exchanges of emissions permits in the market (Kossoy et al., 2015). 

Thus, the right to emit carbon dioxide changes from being a common resource good that is 

rivalrous but not excludable to a private good that is both rivalrous and excludable. When an 

amount of carbon emissions has a real price, is the price reasonable or fair to each 

producer? Lee et al. (2014) find that the carbon shadow price increases as the abatement 

level increases over time in South Korean electricity generating plants. Molinos-Senante et 

al. (2015) argue that the estimation of the carbon shadow price for non-power enterprises 

can provide incentives for reducing greenhouse gas emissions. The objective of this paper is 

to investigate the carbon shadow price at the worldwide level for its economic implications 

and references for global carbon pricing. 

To estimate the shadow prices of undesirable outputs, both parametric and non-

parametric methods, such as translog and quadratic functional forms or data envelopment 

analysis (DEA), tend to be used in the literature. Zhou et al. (2015) compare carbon 

abatement costs among Shanghai industrial sectors using the parametric and non-

parametric approaches, with both the Shephard input/output and directional distance 

functions. Their results indicate that the type of distance functions plays a tiny role in 

estimating carbon shadow prices. However, the choice between parametric and non-

parametric approaches affects the final prices significantly.  

Compared to the parametric approach, a non-parametric framework based on 

activity analysis modeling makes it possible to explore the entire production technology, 

incorporating environmental elements without any particular specifications of functional 
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forms. Zhou et al. (2008) classify two groups in modeling pollution-generating technologies 

among activity analysis models: one uses data transformation or treats undesirable outputs 

as inputs based on free disposability assumption while the other uses original data based on 

a weak disposability assumption. The latter approach is introduced by Färe et al. (1989), such 

that desirable and undesirable outputs can only be decreased proportionately by a uniform 

abatement factor. Kuosmanen et al. (2005) propose an improvement by setting non-uniform 

abatement factors for variable returns to scale (VRS) models; Kuosmanen and Matin (2011) 

develop the dual formulation for this model. The applications of Kuosmanen’s model is 

available from Mekaroonreung and Johnson (2009), Berre et al. (2013), Berre et al. (2014), 

and Lee and Zhou (2015).   

Recently, several pollution-generating technologies have been proposed in non-

parametric models and debates have been generated on selecting the right way to model 

undesirable outputs, such as by-production technology, materials balance principles, and 

weak G-disposability, etc. Indeed, the choice of modeling technologies including 

environmental dimensions should be based on different criteria, according to the research 

question, the level of analysis (micro versus macro), and the types of pollution that are 

included in the production technology (SO2, CO2, NOX, …). 

In detail, weak disposability emphasizes the symbiosis between good and bad 

outputs, which suggests that pollution is difficult to abandon. Some pollutions are easily 

disposed of by the introduction of additional equipment. For example, most sulfides and 

nitrides are soluble in water, and a simple chemical treatment may deal with them 

effortlessly. Even if some of them are difficult to dissolve in water, they can be removed by 

inexpensive approaches (e.g., nitric oxide can be oxidized to nitric dioxide, which is soluble in 

water). Consequently, these pollutions can be at a null level in the final production. At this 

time, the traditional weak disposability assumption is not relevant, and results may not 

provide useful and precise information for environmental regulators. However, some other 

types of pollution, such as carbon dioxide, are difficult to dispose of, and therefore the weak 

disposability assumption seems more appropriate. Murty and Russell (2002) introduce the 

by-production approach, combining two sub-technologies, namely, intended production 

technology and residual generation technology. Their intersection indicates the right trade-

offs in production activities (Murty et al., 2012). On the basis of the laws of 

thermodynamics/mass conservation, material balance principles require the balance of 

materials’ bounds between physical inputs and outputs using weak G-disposability. These 
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two last approaches (by-production and material balance) require detailed data, such as 

pollution-generating inputs, that may be not available for country-level analyses, which 

often retains CO2 as a bad output linked to GDP. Consequently, the weak disposability 

assumption still seems an appropriate manner to model the production technology at the 

macro level.  

Reviews of environmental modeling technologies in a non-parametric framework can 

be found in Zhou et al. (2008), Song et al. (2012), Oude-Lansink and Wall (2014), Zhang and 

Choi (2014), and Dakpo et al. (2015), etc. Zhou et al. (2014) summarize the literature on 

shadow price estimation for undesirable outputs. They note that most of the previous 

papers focusing on the shadow prices of undesirable outputs are conducted at the micro 

level for energy plants or polluted firms because of data availability and that there is a lack 

of studies exploring this field across different countries at a macro level. Yörük and Zaim 

(2005) discover a positive correlation between environmental productivity and climate 

protocol among OECD countries. Wei et al. (2013) argue that carbon shadow prices are 

positively correlated with the technology level of thermal power enterprises. However, most 

papers ignore the relationship between carbon shadow prices and environmental protocol. 

That being so, this paper investigates the global carbon shadow prices for 119 

countries, both developed and developing, using a robust non-parametric model based on 

the weak disposability assumption in the first stage. In the second stage, we analyze the 

impact of the Kyoto Protocol on the evolution of carbon shadow prices. The rest of the paper 

is structured as follows: Section 2 reviews environmental production technology and 

proposes a robust DEA model for estimating carbon shadow prices; Section 3 introduces the 

data and presents the empirical results; Section 4 presents the conclusions. 

 

 

2. Methodology 

 

2.1 Model specification 

 

In order to measure the worldwide carbon shadow price through a model of 

pollution-generating technology, we start from the Shephard’s definition of weakly 
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disposable technology (Färe & Grosskopf, 2003). Introduced by Shephard (1970, 1974), weak 

disposability and the null-joint condition are two classical assumptions usually used to model 

a pollution-generating technology. Weak disposability implies that proportional decreases in 

good and bad outputs are achievable through a scaling down of production activity through 

the introduction of an abatement factor,  . From an economic point of view, desirable and 

undesirable outputs are joint outputs. In addition, the null-joint condition means that the 

desirable outputs cannot be made if the undesirable outputs are at the null level. 

 

Let 
1( ,..., ) N

Nx x R x  denote the vector of inputs, and 1( ,..., ) M
My y R y  and 

1( ,..., ) J
Jz z R z  the vectors of desirable and undesirable outputs for a country, 

respectively. The technology and its corresponding output set are denoted by T  and P: 

 

 ( ):  can produce ( )T  x,y,z x y,z  (1) 

 ( ) ( ):( )P T x y,z x,y,z    (2) 

 

Weak disposability and null-jointness assumptions can be defined as: 

 

If ( ) ( )Py,z x and 0 1   then ( ) ( )P  y, z x   (3) 

If ( ) ( )Py,z x and y = 0  then z = 0    (4) 

 

The directional distance function measures gaps between the observed production 

plans (countries) and the production frontier or the benchmark defined by the best 

practices. The inefficiency scores   estimate these distances. Based on the Färe and 

Grosskopf axiomatic (FG), the production technology and directional distance function for an 

observed sample of K decision-making units (DMUs or countries) are defined by: 
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1 1

'
1 1

ˆ ( ) : , , , , 1, , , , 1, , ,

, 1, , , 1, 0 1,..., , 0 1
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K K
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T R R R y y m M z z j J

x x n N k K

   

   
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 
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




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
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 

 

x,y,z x y z

 (5) 

 ( ) sup : ( )
FG

FGTD T


   y z y zx,y,z;0,g ,g x,y+δ×g ,z-δ×g   (6) 

 

Next, the primal non-linear program under a VRS technology is denoted as: 
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
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 (NLP1) 

 

The nonzero vector ( )y z0,g ,g suggested by Chung et al. (1997) is intended to maximize 

desirable outputs and to minimize undesirable outputs simultaneously. To measure the 

carbon shadow price for each country, we employ output vector as the direction 

( ) ( )y z0, 0,y,zg ,g , starting from a country sample of K DMUs. In NLP1, the production 

technology is non-linear, and this abatement effort is conventionally unique, shared with all 

countries under the VRS assumption. The corresponding VRS linearization related to a 

uniform abatement has been developed correctly by Zhou et al. (2008) and Sahoo et al. 

(2011). In order to maintain the convexity of the technology, Kuosmanen (2005) proposes 

non-uniform abatement factors as k . The resulting technology is given by: 
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 (7) 

 

Kuosmanen technology also leads to a straightforward linearization of Equation 7. Using 

changes of variables k k k    and k k k   , the primal linear program under a VRS 

technology is defined as: 
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  (LP1) 

 

Kuosmanen and Podinovski (2009) argue that their model can provide new economic 

insights into weak disposability while Shephard’s model violates the convexity axiom. 

 

2.2 Shadow prices of undesirable outputs 

 

Thanks to a non-parametric DEA approach, the shadow prices of outputs and inputs 

can be deduced from marginal values related to the constraints in the primal model even 

when the information of market prices is incomplete. These marginal values have no 

economic sense as absolute values, but their ratio may be interpreted as input marginal 

productivities, which can be derived from the Lagrangian method (Equation 8).  
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( ) /

( ) /

Tx

y T

D x

D y





 


 

y z

y z

x,y, z;0,g ,g

x,y, z;0,g ,g
  (8) 

 

In the same manner, the ratio of shadow prices of carbon emissions to GDP can be 

understood as the opportunity cost of reducing one extra unit of carbon emissions by giving 

up a certain unit of GDP. This ratio may provide useful information for producers and 

regulators to make trade-offs between economic benefits and environmental impacts in 

terms of negative externality. Although the shadow prices of undesirable outputs can usually 

be obtained by using the Lagrangian method (cf. Equation 9), the duality can bridge the gap 

between the production technologies and may provide more explicit economic 

representations than the primal model can.  

 

( ) /

( ) /

Tz

y T

D z

D y





 


 

y z

y z

x,y, z;0,g ,g

x,y, z;0,g ,g
  (9) 

 

Kuosmanen and Matin (2011) develop the dual formulation of LP1 to derive the 

shadow prices of bad outputs, which provides an economic interpretation for weak 

disposability. In Kuosmanen’s initial model, the shadow prices of bad outputs are 

unconstrained, allowing negative and positive values. Consequently, bad outputs are 

allowed to involve benefits or costs in production activity that could generate ambiguous 

economic signals. We therefore change the equality sign to inequality ( ) in the second 

constraint of LP1, meaning that bad outputs can only produce costs (negative revenues).  

 

Finally, we compute the corresponding constrained dual model for each country (k’) 

as: 
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 (LP2) 

 

The shadow prices of inputs and good and bad outputs—defined by x , y , and z —

can be directly computed from LP2 by the estimated values of x , y , and z  (Equations 10 

and 11). In LP2, the objective function is to minimize the profit inefficiency of the evaluated 

country (k’) by minimizing the difference between optimal shadow profit   and the shadow 

profit for k’ derived from the best shadow prices and observed inputs and outputs 

' ' '

1 1 1

( )
M J N

m m j j n n

y k z k x k

m j n

y z x  
  

     (Berre et al., 2013).  
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 
  
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  (11) 

 

A methodological point deserves discussion at this stage. It is well known that when 

linear programs are degenerate, several shadow prices are obtained and multiple solutions 

exist. This is generally a problem because we cannot decide easily which solution must be 

kept. Our approach, developed in the next section, circumvents this obstacle through a sub-
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sampling approach. While a large number of replications are computed, we can expect that 

the average shadow prices calculated from their empirical distributions are representative. 

  

2.3 Estimation approach: A robust DEA model  

 

The directional distance function defined in (6) makes it possible to evaluate gaps between 

the observed production plan and the relevant production frontier defined by best practices. 

As the true frontier is unknown, this distance function in a general multi-output, multi-input 

framework is gauged through LP1 or LP2. Owing to their non-parametric nature, these linear 

programs permit the avoidance of eventual bias effects on efficiency scores and shadow 

prices resulting from the arbitrary choice of the functional forms of technology necessary for 

econometric methods. However, this enveloping technique has a major drawback: it is 

difficult to incorporate statistical noise into the empirical estimations. Therefore, estimated 

shadow prices may be significantly influenced by potential outliers belonging to the 

production set. This issue can be resolved through successive sub-sampling frontier 

estimations rather than only one traditional full frontier. Consequently, in our empirical 

analysis, the presence of potential outliers is taken into account by applying an estimation 

strategy proposed by Kneip et al. (2008) and Cazals et al. (2002), from which consistent 

estimators can be derived. More precisely, partial frontiers are constructed from a large 

number of Monte-Carlo replications ( 1, ,b B ), by selecting different random sub-samples 

of size I ( I K ) with replacement and based on the initial observed DMUs. Their 

corresponding production sets are now defined as:  
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(12) 

 

This leads to defining the directional distance function relative to each sub-sample ( b ) as: 
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 ' ' ' ' ' ' ' ' '
ˆ ˆ( , , ) max : ( , , )b m j n m m j j n b

k k k k k k k k k KUy z x y y z z x T         (13) 

 

Finally, robust values of the shadow prices of inputs and good and bad outputs are obtained 

from their empirical distributions as:  
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  (14) 

 

This robust frontier approach is characterized by the number of replications (B) and the size 

(I) of the sub-samples. The number of the Monte-Carlo replications has to be large enough 

to check the sensitivity of the final results. If the sub-sample size reaches infinity, one gets 

back to the shadow prices of LP2 because each country of the entire sample has a high 

probability of selection into the sub-technology. By contrast, with too small values for I, the 

referent production set might be inappropriate. As a result, through a relevant choice 

between these two parameters, the robust frontier approach implies a trade-off between a 

pertinent definition of the technology and a control of the outlier bias effects.  

 

3. Data and results 

 

3.1. Data  

 

In order to estimate global carbon shadow prices, we try to integrate as large a number 

as possible of country samples from all over the world. Our data covers 119 countries in 12 

groups for the period from 1990 to 2011: 20 countries from Africa (Angola, Benin, Botswana, 

Cameroon, Côte d'Ivoire, Democratic Republic of the Congo, Ethiopia, Gabon, Ghana, 

Kenya, Morocco, Mozambique, Nigeria, Republic of the Congo, Senegal, Sudan, Togo, 

Tunisia, Zambia, and Zimbabwe), 10 countries from Asia (Bangladesh, Brunei Darussalam, 
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Malaysia, Mongolia, Nepal, Pakistan, Philippines, Singapore, Sri Lanka, and Thailand), 4 

countries from the BRI(C)S (Brazil, India, Russian Federation, and South Africa), 5 countries 

from CIVET (Colombia, Egypt, Indonesia, Turkey, and Viet Nam), 11 countries from the 

Middle East (Bahrain, Islamic Republic of Iran, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, 

Saudi Arabia, Syrian Arab Republic, and Yemen), 14 countries from the Non-OECD 

Americas (Argentina, Bolivia, Costa Rica, Dominican Republic, Ecuador, El Salvador, 

Guatemala, Honduras, Jamaica, Panama, Peru, Trinidad and Tobago, Uruguay, and 

Venezuela), 21 countries from Non-OECD Europe and Eurasia (Albania, Armenia, 

Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Georgia, 

Kazakhstan, Kyrgyzstan, Latvia, Lithuania, Malta, Republic of Moldova, Romania, Serbia, 

Tajikistan, Turkmenistan, Ukraine, and Uzbekistan), 3 countries from the OECD Americas 

(Canada, Chile, and Mexico), 5 countries from OECD Asia Oceania (Australia, Israel, Japan, 

New Zealand, and Republic of Korea), 24 countries from OECD Europe (Austria, Belgium, 

Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, 

Ireland, Italy, Luxembourg, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, 

Spain, Sweden, Switzerland, and the United Kingdom), and the two biggest carbon emitters, 

China, and the United States of America (USA), respectively.  

We use two inputs, one desirable output, and one undesirable output: capital stock, 

labor force, real GDP, and carbon dioxide emissions, respectively. Capital stock is measured 

using the perpetual inventory method at current purchasing power parities in 2005 US million 

dollars. The labor force is measured as number of persons employed, in millions. Real GDP is 

measured as output-side at current purchasing power parities in 2005 US million dollars. 

Carbon emissions are based on sectoral approach in million tons. The first three are taken 

from the Penn World Table 8.1 (Feenstra et al., 2015) and the last from fuel combustion 

highlights (International Energy Agency, 2014). 

 

Table 1 shows the average growth rates of inputs and outputs. China, the Middle East, 

CIVET, and Asia have the top four growth rates of capital stock (all higher than 6%), possibly 

because of their proactive investment policies and good financing environment. We note that 

a negative growth in labor force appears only in Non-OECD Europe and Eurasia (-0.34%) and 

that the global trend is increasing, at 1.43%. The growth rates of real GDP in the Middle East, 

China, and Africa, the three highest, respectively, are all above 5%. China has the highest 

growth rate of carbon emissions (5.91%) and has been the largest emitter, rather than the 

USA, since 2008. Although the USA has a high level of carbon emissions, it is increasing at 

only 0.6%. Europe has negative growth in carbon emissions (-0.15%) thanks to effective and 



 
 

15 
 

efficient environmental policies. We also notice that Non-OECD Europe and Eurasia has a 

negative trend in carbon emissions (-1.78%), reflecting the economic downturn after the 

collapse of the former Soviet Union.  

 

Table 1 about here 

 

 

3.2. Empirical results 

 

Because we may have introduced outliers into production technology owing to the disparate 

scales of national economies and carbon emissions among countries, a robust frontier 

approach is implemented. We simulate 1000B  replications with a sub-sample size 90I   

out of the 119 countries in the initial sample. The robust shadow prices are computed by the 

mean values of the 1000 replications in the first stage. 

In Figure 1, the evolution of the carbon shadow price at a worldwide level is 

measured by the average value of each group in logarithm terms. The carbon shadow price 

is significantly increasing, at an annual rate of 2.24% (t-value=6.81). This first result is in line 

with Table 1, which clearly shows that the growth rate of real GDP is around twice as high as 

that for CO2. This suggests that pollution issues have been taken more into account by most 

of countries, particularly in Non-OECD Europe, OECD Europe, and the USA. The worldwide 

carbon shadow price is evaluated at around 1213 US dollars per ton in 1990 and experiences 

a steady fifteen-year growth between 1991 and 2005 to around 2191 US dollars per ton in 

2005. A significant decrease in the carbon shadow price is observed between 2005 and 2009, 

followed by a substantial rise for 2009–2011; its mean value is around 2845 US dollars per 

ton in 2011. 

 

Figure 1 about here 

 

The kernel densities of carbon shadow prices are plotted in Figure 2. In most regions, 

carbon shadow prices are distributed around 600 US dollars per ton in 1990 and 2400 US 

dollars per ton in 2011. The right side shift of the kernel density peaks between these two 
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periods confirms the positive growth for carbon shadow prices. Simultaneously, their 

distribution is significantly more dispersed. 

 

Figure 2 about here 

 

For a specific group of countries, the regional carbon shadow prices show clustering 

characteristics. In Figure 3, three groups of carbon shadow prices can be easily identified at 

the beginning of the sample period. The first group includes Africa, Asia, and the Non-OECD 

Americas, presenting the highest carbon shadow prices. The second group contains China and 

the USA, which record the lowest carbon shadow prices. These levels indicate that their 

marginal abatement costs of carbon emission are very low. The third group contains the rest 

of the regions, with shadow prices between the first and the second groups’ levels.  

 

Figure 3 about here 

 

We find that the three groups evolve into five new bunches of countries at the end of 

the sample period. First, Africa still has the highest carbon shadow prices. The new second 

group is composed of Asia, the Non-OECD Americas, and Non-OECD Europe and Eurasia. 

Their carbon shadow prices are just below the African level. The third group gathers OECD 

Europe, the Middle East, and CIVET. These three groups have relatively high carbon shadow 

prices, which indicates that they have less of an impact on global warming. The rest of the 

regions except China comprises the fourth group. The fourth group and China dominate the 

lowest carbon shadow prices, which implies that they contribute much of the world’s 

pollution. In other words, they produce GDP without considering environmental costs. 

However, all countries have to share the pollution and pay for carbon taxes.  

We note that the carbon shadow prices of the BRI(C)S, OECD Asia Oceania, and the 

OECD Americas tend to be of a similar level while OECD Europe is detached from the other 

OECD groups during this evolution. The growth of carbon shadow prices in OECD Europe 

indicates that effective and efficient environmental policies has been carried out. 

On the whole, developed countries have lower carbon shadow prices, developing 

regions dominate higher carbon marginal abatement costs, and BRICS countries have a 

relatively low opportunity cost of carbon abatement. This result is consistent with Maradan 

and Vassiliev (2005), who point out that the marginal carbon abatement cost is generally 
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higher in developing countries than in developed ones even if carbon shadow prices in some 

developing countries are lower than those in high-income countries.  

The growth rates of carbon shadow prices for each region are displayed in Table 2. 

Most of the observed regions reveal significantly increasing trends in carbon shadow prices 

while the BRICS countries record negative growths. These results can be summarized as 

follows:  

 

1) Favored emerging economies show rapid economic development, and their 

economic growth is essentially dependent on high energy consumption, implying carbon 

emissions;  

2) countries with higher carbon emissions have lower opportunity costs for reducing 

pollution; and  

3) shadow price distributions show substantial disparities among countries. 

 

Table 2 about here 

 

As shown in Figure 4, one can observe a sigma convergence of carbon shadow prices 

over the period 1990–2007. The decline of variation coefficient is around -3.6% per year and 

is statistically significant (t-value = -14.43). Conversely, a sigma divergence is detected 

between 2008 and 2011. This phenomenon may be correlated with the global financial crisis 

triggered in the USA. Woo et al. (2015) argue that environmental efficiency is being affected 

by the global financial crisis. Our results show that this crisis may potentially affect carbon 

shadow prices. 

 

Figure 4 about here 

 

Finally, in order to examine the impact of the Kyoto Protocol on the carbon shadow prices, 

we conduct a regression analysis. Historically, the Kyoto Protocol was adopted at the third 

session of the conference of the parties (COP 3) in 1997. It was open for signature from 1998 

to 1999 and received 84 signatures at that time, but 191 states are now party to it.1 The 

effect of the Kyoto Protocol (KP) is tested in a fixed effect panel model. According to the 

date of entry into force, a dummy variable is created for each country and year (cf. 

Appendix). We add to the regression equation the ratio of carbon emissions to GDP as a 

                                                           
1 Sourced from the United Nations Framework Convention on Climate Change: 

http://unfccc.int/kyoto_protocol/status_of_ratification/items/2613.php 
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control variable (CO2/GDP), with  denoting the error term (cf. Equation 15). Time-fixed 

effects are also introduced through parameter
t . Consistent with the robust approach we 

used to compute shadow prices, our estimation strategy is to run a regression per sub-

sampling replication and to build confidence intervals for parameters of interest from the 

empirical distribution of the fixed effects estimators. The regression model is defined by 

Equation 15, and the results are presented in Table 3 and Figure 5. 

 

0 1 2 2ln ln( / ) ( )it t it it itCSP CO GDP Du KPmmy          (15) 

 

Table 3 about here 

 

Figure 5 about here 

 

According to our findings, we conclude that the implementation of the Kyoto Protocol 

has not a very effective impact on the evolution of carbon shadow prices. The kernel density 

of 2  displayed in Figure 5 shows that the distribution of the parameters is mostly positive, 

but we cannot reject the finding that zero belongs to this distribution at the 5% level. 

Therefore, we have to conclude that the Kyoto Protocol did not significantly affect the 

pollution regulations of engaged states. This emphasizes that further cooperation and efforts at 

carbon reduction among countries, such as the Copenhagen Accord of 2009 and the Paris 

climate conference of 2015, were necessary. 

 

 

4. Conclusions 

 

Global warming and carbon pricing were the core issues of the last conference of the 

parties (COP 21) in Paris in 2015. Most states support the idea of carbon pricing to bring 

down emissions. A remaining question is the best way that governments can price carbon 

emissions. Currently, two main types of mechanism can be used: emissions-trading systems, 

which essentially fix the quota for emissions, leading to an ex-post market price for carbon, 

and taxes that directly set a price on carbon without constraining ex-ante the volume of 
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emissions. At the moment, given the difficulty of fixing a carbon price, governments favor 

the first option.  

 

Our analysis is more in line with the second mechanism and could help policy makers 

to evaluate levels of carbon pricing among different countries and to fix relevant carbon 

taxes. Through a non-parametric robust frontier, we estimate worldwide carbon shadow 

prices, incorporating desirable and undesirable outputs, for a sample of 119 countries. 

According to our empirical results, the carbon shadow price is increasing at a rate of 2.24% 

per annum, reaching 2845 US dollar per ton in 2011, which suggests that carbon abatement 

may become increasingly challenging at the worldwide level. However, significant disparities 

are observed among groups of countries and over time. A significant sigma convergence of 

carbon shadow prices is observed among regions between 1990 and 2007, while a 

divergence is detected over the period 2007–2011. This means that economic fluctuations 

and shocks may affect carbon shadow prices.  

 

In this paper, we conclude that the Kyoto Protocol has had no significant impact on 

carbon shadow prices. Therefore, countries need to keep engaging in Kyoto resolutions. A 

new agreement was adopted at the Paris climate conference, which included more countries 

and ambitious targets. While the necessity of carbon pricing is more and more commonly 

shared among parties, the main question relates to the uniqueness of the CO2 tax. Our main 

conclusion suggests that unique carbon pricing for countries with different levels of 

economic development and pollution may be unfair or unreasonable. Carbon taxes should 

be settled according to the respective social capabilities of states.  
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Table 1. Average growth rates of inputs and outputs 1990–2011 

 

 

 

 

Regions 
Capital 

Stock 

Labor 

Force 
Real GDP CO2 

Africa 4.95% 2.68% 5.65% 3.28% 

Asia 6.28% 2.26% 4.18% 4.62% 

BRI(C)S 2.78% 1.73% 3.95% 1.43% 

CIVET 7.24% 1.77% 3.85% 4.62% 

Middle East 7.61% 3.68% 8.49% 4.83% 

Non-OECD Americas 5.16% 2.05% 4.61% 3.17% 

Non-OECD Europe and 

Eurasia 
2.03% -0.34% 2.44% -1.78% 

OECD Americas 3.20% 1.98% 3.15% 1.78% 

OECD Asia Oceania 4.05% 0.41% 2.03% 1.52% 

OECD Europe 3.73% 0.75% 2.91% -0.15% 

China 11.05% 1.00% 6.72% 5.91% 

USA 3.73% 0.93% 2.72% 0.60% 

Total 4.68% 1.43% 3.69% 2.02% 
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Table 2. Average growth rates of carbon shadow prices 1990–2011 

  

Regions coefficient t-value 

Africa 1.00% 1.69 

Asia 0.79% 2.65 

BRI(C)S -0.97% -1.01 

CIVET 5.22% 12.55 

Middle East 2.28% 3.70 

Non-OECD Americas 3.10% 6.80 

Non-OECD Europe  

and Eurasia 
3.56% 2.58 

OECD Americas 0.74% 0.76 

OECD Asia Oceania 4.43% 4.25 

OECD Europe 7.01% 14.97 

China -4.81% -5.03 

USA 2.31% 3.05 

Total 2.24% 6.81 
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Table 3. Estimates of the Kyoto Protocol equation (15) 

Coefficient 
Mean 

estimation 

Lower bound 

(2.5%) 

Upper bound 

(97.5%) 

Significance at 5% 

level* 

 

0   6.521 5.426 7.516 Yes  

1  -0.048 -0.200 0.096 No  

2   0.198 -0.060 0.455 No  

*A coefficient is significantly different from 0 if the confidence interval does not include 0. 
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Figure 1. Shadow prices of carbon emissions at worldwide level (in logarithmic terms) 

 

 

CSP: Carbon shadow price ($/ton) 
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Figure 2. Kernel density of carbon shadow prices
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Figure 3. Shadow prices of carbon emissions (in logarithmic terms) 

 

 

CSP: Carbon shadow price ($/ton) 
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Figure 4. Variation coefficient of shadow prices 
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Figure 5. Kernel density of coefficient of the Kyoto Protocol 
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Appendix: Implementation dates of the Kyoto Protocol 

 

Country Entry into force Country Entry into force Country Entry into force 

ALBANIA 30-Jun-05 GEORGIA 16-Feb-05 PERU 16-Feb-05 

ANGOLA 6-Aug-07 GERMANY 16-Feb-05 PHILIPPINES 16-Feb-05 

ARGENTINA 16-Feb-05 GHANA 16-Feb-05 POLAND 16-Feb-05 

ARMENIA 16-Feb-05 GREECE 16-Feb-05 PORTUGAL 16-Feb-05 

AUSTRALIA 11-Mar-08 GUATEMALA 16-Feb-05 QATAR 11-Apr-05 

AUSTRIA 16-Feb-05 HONDURAS 16-Feb-05 R. KOREA 16-Feb-05 

AZERBAIJAN 16-Feb-05 HUNGARY 16-Feb-05 R. MOLDOVA 16-Feb-05 

BAHRAIN 1-May-06 ICELAND 16-Feb-05 ROMANIA 16-Feb-05 

BANGLADESH 16-Feb-05 INDIA 16-Feb-05 RUSSIAN  16-Feb-05 

BELARUS 24-Nov-05 INDONESIA 3-Mar-05 SAUDI ARABIA 1-May-05 

BELGIUM 16-Feb-05 IRAN 20-Dec-05 SENEGAL 16-Feb-05 

BENIN 16-Feb-05 IRAQ 26-Oct-09 SERBIA 17-Jan-08 

BOLIVIA 16-Feb-05 IRELAND 16-Feb-05 SINGAPORE 11-Jul-06 

BOSNIA & H. 15-Jul-07 ISRAEL 16-Feb-05 SLOVAKIA 16-Feb-05 

BOTSWANA 16-Feb-05 ITALY 16-Feb-05 SLOVENIA 16-Feb-05 

BRAZIL 16-Feb-05 JAMAICA 16-Feb-05 SOUTH AFRICA 16-Feb-05 

BRUNEI D. 18-Nov-09 JAPAN 16-Feb-05 SPAIN 16-Feb-05 

BULGARIA 16-Feb-05 JORDAN 16-Feb-05 SRI LANKA 16-Feb-05 

CAMEROON 16-Feb-05 KAZAKHSTAN 17-Sep-09 SUDAN 16-Feb-05 

CANADA 16-Feb-05 KENYA 26-May-05 SWEDEN 16-Feb-05 

CHILE 16-Feb-05 KUWAIT 9-Jun-05 SWITZERLAND 16-Feb-05 

CHINA 16-Feb-05 KYRGYZSTAN 16-Feb-05 SYRIAN A. R. 27-Apr-06 

COLOMBIA 16-Feb-05 LATVIA 16-Feb-05 TAJIKISTAN 29-Mar-09 

CONGO 13-May-07 LEBANON 11-Feb-07 THAILAND 16-Feb-05 

COSTA RICA 16-Feb-05 LITHUANIA 16-Feb-05 TOGO 16-Feb-05 

COTE D’IVOIRE 22-Jul-07 LUXEMBOURG 16-Feb-05 TRINIDAD & T. 16-Feb-05 

CROATIA 28-Aug-07 MALAYSIA 16-Feb-05 TUNISIA 16-Feb-05 

CYPRUS 16-Feb-05 MALTA 16-Feb-05 TURKEY 26-Aug-09 

CZECH R. 16-Feb-05 MEXICO 16-Feb-05 TURKMENISTAN 16-Feb-05 

D. R. CONGO 21-Jun-05 MONGOLIA 16-Feb-05 UKRAINE 16-Feb-05 

DENMARK 16-Feb-05 MOROCCO 16-Feb-05 UK 16-Feb-05 

DOMINICAN R. 16-Feb-05 MOZAMBIQUE 18-Apr-05 USA None 

ECUADOR 16-Feb-05 NEPAL 15-Dec-05 URUGUAY 16-Feb-05 

EGYPT 12-Apr-05 NETHERLANDS 16-Feb-05 UZBEKISTAN 16-Feb-05 

EL SALVADOR 16-Feb-05 NEW ZEALAND 16-Feb-05 VENEZUELA 19-May-05 

ESTONIA 16-Feb-05 NIGERIA 10-Mar-05 VIET NAM 16-Feb-05 

ETHIOPIA 13-Jul-05 NORWAY 16-Feb-05 YEMEN 16-Feb-05 

FINLAND 16-Feb-05 OMAN 19-Apr-05 ZAMBIA 5-Oct-06 

FRANCE 16-Feb-05 PAKISTAN 11-Apr-05 ZIMBABWE 28-Sep-09 

GABON 12-Mar-07 PANAMA 16-Feb-05   

Sourced from the United Nations Framework Convention on Climate Change. 
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