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Abstract

The purpose of this contribution is to empirically implement and supplement the pro-

posals made by Podinovski (2004b) to explore the nature of both global and local

returns to scale in nonconvex nonparametric technologies. In particular, employing

some secondary data sets, we investigate the frequency of the special case of global

sub-constant returns to scale. Furthermore, we check how often global returns to scale

yield concordant and conflicting information when evaluated relative to convex and

nonconvex technologies. Finally, we explore local returns to scale in FDH by tracing

the evolution of ray-average productivity for some typical individual observations and

compare with DEA.
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1 Introduction

Thanks to the seminal article of Charnes, Cooper, and Rhodes (1978), the nonparametric ap-

proach to production theory has become one of the success stories in the operations research

(OR) literature in terms of both methodological developments and empirical applications.

While one of the early bibliographical overview article listed about 800 published articles and

dissertations related to Data Envelopment Analysis (DEA) over the years 1978–1996 (see

Seiford (1997)), one of the the more recent bibliography articles of Emrouznejad, Parker,

and Tavares (2008) counted already 4000 research articles in journals or book chapters up

to the year 2007.1

While the axiom of convexity is traditionally maintained in these nonparametric pro-

duction models (see Afriat (1972), Banker, Charnes, and Cooper (1984), Charnes, Cooper,

and Rhodes (1978), Diewert and Parkan (1983) or any of the early contributions in both

economics and OR), Afriat (1972) was probably the first to mention a basic single output

nonconvex technology imposing the assumptions of free disposal of inputs and outputs. Its

multiple output extension has probably first been proposed in Deprins, Simar, and Tulkens

(1984) and these authors introduced the moniker Free Disposal Hull (FDH).2

Convexity is justified for time divisible technologies (see Hackman (2008)), but becomes

questionable when time indivisibilities compound all other reasons for spatial nonconvexities

(e.g., indivisibilities, increasing returns to scale, economies of specialization, externalities,

etc.). Shephard (1967, p. 215) puts things clearly when discussing the axiom of quasi-

concavity of the production function in relation to convexity of the input level sets when

formally defining the notion of a production function:

The last one is effectively the only assumption which would appear to be re-

strictive, but even so it is essential if the production function is to represent the

maximum output obtainable for time divisible processes. If the processes are not

time divisible, the input [(1− θ)x+ θy] is not evidently feasible. .... We exclude

considerations of such technologies.

In addition to this general criticism, there are other more specific criticisms of convexity

around in the literature. For instance, Emrouznejad and Amin (2009) indicate that the

1Including unpublished dissertations, working papers, and conference papers would have led to over 7000
entries.

2Tone and Sahoo (2003, p. 172) mention Scarf (1981a; 1981b) as an important but neglected predecessor
of FDH, because he studied activity analysis models based on integer data.
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traditional convexity axiom is problematic when some of the inputs and/or some of the

outputs are ratio variables.

This basic FDH model has been extended in at least two directions. First, Kerstens

and Vanden Eeckaut (1999) introduced constant, nonincreasing and nondecreasing returns

to scale technologies complementary to the assumption of flexible or variable returns to

scale embodied in the basic FDH model. Furthermore, these same authors proposed a new

goodness-of-fit method to infer the characterization of global returns to scale for nonconvex

technologies, since none of the existing methods (see, e.g., Seiford and Zhu (1999) for an early

overview and Banker, Cooper, Seiford, Thrall, and Zhu (2004) for a more recent version) was

suitable in this nonconvex setting. Second, this family of nonconvex technologies has been

supplemented by nonconvex cost functions with corresponding returns to scale assumptions

in Briec, Kerstens, and Vanden Eeckaut (2004).3

While these nonconvex technology and cost models are nowhere as popular as the convex

DEA counterparts, the basic FDH model and its extensions have been regularly applied

to assess performance-related research questions in a variety of sectors. We offer a limited

selection of examples to provide some flavor of these results. Alam and Sickles (1998) study

the evolution of technical efficiency in the US airline industry and analyze the news value

of changes in frontier performance in relation to the stock market prices. Destefanis (2003)

analyzes the macroeconomic relationship between the growth of output and the growth of

productivity (known as Verdoorn’s law) using nonconvex FDH models. Tone and Sahoo

(2003) argue and illustrate that the nonconvex FDH model applied to a multi-stage produc-

tion technology is capable to capture scale effects arising from process indivisibilities, whereas

standard convex nonparametric technologies fail to exhibit such scale effects. Cummins and

Zi (1998) contrast convex and nonconvex estimates of both technical and cost efficiency

for US life insurers, while Balaguer-Coll, Prior, and Tortosa-Ausina (2007) document cost

efficiency differences among Spanish municipalities.

An important point to note is that the results of these nonconvex technology and cost

frontiers often yield different results compared to the convex ones. While it is true that

nonconvex technology frontiers lead to higher efficiency levels and more efficient observations,

the studies of Balaguer-Coll, Prior, and Tortosa-Ausina (2007) and Cummins and Zi (1998)

document convincingly that convex cost frontier estimates may be substantially below the

nonconvex ones under variable returns to scale.

3Ray (2004) shows that the nonconvex cost function based on flexible returns to scale FDH is the multiple
output version of the cost function implicit in the Weak Axiom of Cost Minimisation of Varian (1984)).
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Podinovski (2004a; 2004b) is the first to indicate that the goodness-of-fit method of

Kerstens and Vanden Eeckaut (1999) to characterize global returns to scale for nonconvex

technologies -which just like Färe, Grosskopf, and Lovell (1983) uses only scale efficiency

measures- is incomplete. In particular, he argues that one must distinguish a fourth type of

global sub-constant returns to scale case in addition to the three traditional cases (constant,

decreasing and increasing returns to scale). This global sub-constant returns to scale case

allows a unit to achieve its most productive scale size (see Banker, Charnes, and Cooper

(1984)) by both reducing and increasing its scale of operations. This fourth type of global

sub-constant returns to scale can never occur in traditional convex DEA technologies.

Independent of this contribution, there have been three articles that basically simplify

the computations needed to implement the goodness-of-fit method of Kerstens and Vanden

Eeckaut (1999) to characterize returns to scale: Soleimani-damaneh, Jahanshahloo, and

Reshadi (2006), Soleimani-damaneh and Reshadi (2007), and Soleimani-damaneh and Mo-

stafaee (2009). In fact, Soleimani-damaneh and Mostafaee (2009) furthermore offer some

stability intervals to preserve the returns to scale classification via a polynomial time al-

gorithm based on combining certain ratios of inputs and outputs. However, the classifica-

tion procedure for global returns to scale proposed by these authors does not allow for the

sub-constant returns to scale case. Therefore, we discuss how to amend their procedures for

this purpose.

As far as the role of local returns to scale is concerned, Banker (1984) and especially

Banker and Thrall (1992) show that in a convex technology global and local characterizations

-based on scale efficiency and scale elasticity measures, respectively- coincide. The innovation

of Podinovski (2004a; 2004b) is that he points out that this equivalence between global and

local indicators breaks down for nonconvex technologies, due to the non-monotonic behavior

of the ray average productivity (RAP) of a unit when expanding or contracting towards a

point of most productive scale size.4 However, he only provides an illustration of the RAP

function in a single input and output fictitious FDH technology (see Podinovski 2004a, p.

234), while our aim is to depict this behavior and its consequences in an empirical multiple

inputs and outputs setting.

This contribution intends to achieve several goals. First, we want to empirically de-

termine the prevalence of the global sub-constant returns to scale case. Second, we want to

establish some specific links between the Podinovski (2004a; 2004b) articles on the one hand,

and the contributions made by Soleimani-damaneh, Jahanshahloo, and Reshadi (2006) and

4RAP indicates average productivity in a multiple inputs and output technology. See also Ray (2004, p.
63-64) for this RAP notion.
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Soleimani-damaneh and Reshadi (2007) on the other hand. Third, we want to explore the

differences between global returns to scale characterizations under the hypothesis of convex-

ity or nonconvexity. Finally, we shed some light on the changes in local returns to scale in

an empirical multiple inputs and outputs nonconvex technology by depicting the evolution

of ray-average productivities for a selection of particular observations, and by comparing

this evolution to its convex counterpart. To the best of our knowledge, this is the first

contribution shedding some light on these issues.

For these purposes, this paper is structured as follows. Section 2 provides some basic

definitions of the traditional convex and the less widely applied nonconvex technologies.

Section 3 summarizes the known results to characterize returns to scale at both the global

and local level. Then follows a Section 4 with some empirical illustrations based on secondary

data sets. Section 5 concludes and outlines future research issues.

2 Nonparametric Technologies: A Unified Represent-

ation

Consider a set of K observations A = {(x1, y1) , ..., (xK , yK)} ∈ Rm+n
+ . A production tech-

nology describes all available possibilities to transform input vectors x = (x1, . . . , xm) ∈ Rm
+

into output vectors y = (y1, . . . , yn) ∈ Rn
+. The production possibility set or technology

S summarizes the set of all feasible input and output vectors: S = {(x, y) ∈ Rm+n
+ :

x can produce y}. Given our focus on input-oriented efficiency measurement later on, this

technology can be represented by the input correspondence L : Rn
+ → 2Rm

+ where L(y) is the

set of all input vectors that yield at least the output vector y:

L(y) = {x : (x, y) ∈ S} . (1)

The radial input efficiency measure can be defined as:

Ei (x, y) = min {λ : λ ≥ 0, λx ∈ L(y)} . (2)

This Farrell efficiency measure, which is the inverse of the input distance function, indicates

the minimum contraction of an input vector by a scalar λ while still remaining in the input

correspondence. Obviously, the resulting input combination is located at the boundary of

this input correspondence. For our purpose, the radial input efficiency has two key properties
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(see, e.g., Hackman (2008)). First, it is smaller or equal to unity (0 < Ei (x, y) ≤ 1), whereby

efficient production on the isoquant of L(y) is represented by unity and 1−Ei (x, y) indicates

the amount of inefficiency. Second, it has a cost interpretation.

Non-parametric specifications of technology can be estimated by enveloping these K

observations in the set A while maintaining some basic production axioms (see Hackman

(2008) or Ray (2004)). We are interested in defining minimum extrapolation technologies

satisfying strong disposability in the inputs and outputs, all four traditional returns to scale

hypotheses (i.e., constant, nonincreasing, nondecreasing and variable (flexible) returns to

scale), including those technologies that satisfy the assumption of convexity and those that

do not

A unified algebraic representation of convex and nonconvex technologies under different

returns to scale assumptions for a sample of K observations is found in Briec, Kerstens, and

Vanden Eeckaut (2004):

SΛ,Γ =

{
(x, y) ∈ Rm+n

+ : x ≥
K∑
k=1

xkδ zk, y ≤
K∑
k=1

ykδ zk,
K∑
k=1

zk = 1, zk ∈ Λ, δ ∈ Γ

}
, (3)

where

(i) Γ ≡ ΓCRS = {δ : δ ≥ 0} ;

(ii) Γ ≡ ΓNDRS = {δ : δ ≥ 1} ;

(iii) Γ ≡ ΓNIRS = {δ : 0 ≤ δ ≤ 1} ;

(iv) Γ ≡ ΓVRS = {δ : δ = 1} ; and

(i) Λ ≡ ΛC = {zk ≥ 0} , and (ii) Λ ≡ ΛNC = {zk ∈ {0, 1}} .

First, there is the activity vector (z) operating subject to a convexity (C) or nonconvexity

(NC) constraint. Second, there is a scaling parameter (δ) allowing for a particular scaling

of all K observations spanning the technology. This scaling parameter is smaller than or

equal to 1 or larger than or equal to 1 under nonincreasing returns to scale (NIRS) and

nondecreasing returns to scale (NDRS) respectively, fixed at unity under variable returns to

scale (VRS), and free under constant returns to scale (CRS).

Briefly discussing the computational methods for obtaining the radial input efficiency

measure (2) for each evaluated observation relative to all technologies in (3), the convex case

just requires solving a nonlinear programming problem (NLP): this is evidently simplified to

the familiar linear programming (LP) problem found in the literature (see Hackman (2008) or
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Ray (2004)) by substituting wk = δzk. For nonconvex technologies, nonlinear mixed integer

programs must be solved in (3): however, Podinovski (2004c), Leleu (2006) and Briec,

Kerstens, and Vanden Eeckaut (2004) propose mixed integer programs, LP problems, and

closed form solutions derived from an implicit enumeration strategy, respectively. Kerstens

and Van de Woestyne (2014) review all methods in this nonconvex case in more detail and

empirically document that implicit enumeration is by far the fastest solution strategy.

3 Characterizing Returns to Scale

3.1 Global Returns to Scale

For a given input mix and given output mix a Most Productive Scale Size (MPSS) point

refers to a scale size where the level of outputs produced ‘per unit’ of the inputs is maximized.

Following Banker (1984), Banker, Charnes, and Cooper (1984, p. 37) and Banker and Thrall

(1992, Definition 1)), the MPSS notion can be defined as follows.

Definition 3.1. A production possibility (xM , yM) ∈ SΛ,V RS represents an MPSS point if

and only if for all production possibilities (δxM , γyM) ∈ SΛ,V RS we have γ/δ ≤ 1.

This notion of MPSS is key in determining returns to scale for general technologies, since it

does not require any differentiability assumption (in contrast to the scale elasticity notion).

Note that Podinovski (2004a, Definition 2) defines MPSS as the inverse of the above ratio.

As a direct consequence of this definition, (xM , yM) ∈ SΛ,V RS represents an MPSS point

if and only if r∗ = 1 with

r∗ = max
(γ
δ

: (δxM , γyM) ∈ SΛ,V RS, δ, γ > 0
)
. (4)

This implies that at the optimum, r∗ = 1 ⇔ γ∗ = δ∗, which reflects the familiar condition

for proportional changes in inputs to equal proportional changes in outputs at the optimum.

Banker (1984) shows that in a convex technology each scale-efficient point (i.e., CRS

efficient) is an MPSS and also the reverse (see Banker (1984, Proposition 2)), while each scale-

inefficient point locally exhibits either decreasing or increasing returns to scale according to

the sign of the divergence between their actual scale size and their MPSS (see Banker (1984,

Corollary 1)). Thus, a classification method can exclusively rely on the “global” comparison

between a unit and its MPSS (i.e., its scale efficiency), without depending explicitly on the
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quantitative information supplied by the “local” scale elasticity measure.

In the literature, several methods are available to obtain qualitative information regarding

global returns to scale (see Seiford and Zhu (1999)). Since none of these existing methods

are suitable for nonconvex technologies, Kerstens and Vanden Eeckaut (1999, Proposition

2) generalize the existing goodness-of-fit method proposed by Färe, Grosskopf, and Lovell

(1983) in a convex setting such that it becomes perfectly general.

Proposition 3.1. Using Ei(x, y|.) and conditional on the optimal projection point, techno-

logy SΛ,V RS is globally characterized by:

(a) GCRS ⇔ Ei(x, y|CRS) = max {Ei(x, y|CRS), Ei(x, y|NIRS), Ei(x, y|NDRS)};

(b) GIRS⇔ Ei(x, y|NDRS) = strict max {Ei(x, y|CRS), Ei(x, y|NIRS), Ei(x, y|NDRS)};

(c) GDRS⇔ Ei(x, y|NIRS) = strict max {Ei(x, y|CRS), Ei(x, y|NIRS), Ei(x, y|NDRS)}.

where GCRS, GIRS and GDRS stand for globally constant, increasing and decreasing returns

to scale respectively. Following Soleimani-damaneh, Jahanshahloo, and Reshadi (2006, p.

1056: Note 1), we introduce a “strict max” expression defined as: a = strict max{a, b, c} if

and only if a > b and a > c.

As noted by Podinovski (2004b, p. 173), following Briec, Kerstens, Leleu, and Vanden Eeckaut

(2000, Proposition 5) one can simplify the above result for general technologies.

Proposition 3.2. Using Ei(x, y|.) and conditional on the optimal projection point, techno-

logy SΛ,V RS is globally characterized by:

(a) GCRS ⇔ Ei(x, y|NIRS) = Ei(x, y|NDRS) = max {Ei(x, y|NIRS), Ei(x, y|NDRS)};

(b) GIRS ⇔ Ei(x, y|NDRS) = strict max {Ei(x, y|NIRS), Ei(x, y|NDRS)};

(c) GDRS ⇔ Ei(x, y|NIRS) = strict max {Ei(x, y|NIRS), Ei(x, y|NDRS)}.5

This result is qualified by Podinovski (2004a, Theorem 3) and Podinovski (2004b, The-

orem 2) in that he adds a fourth case of global sub-constant returns to scale case that is only

relevant for nonconvex technologies.

5This proposition qualifies Briec, Kerstens, Leleu, and Vanden Eeckaut (2000, Proposition 4): as an
implication of their Proposition 5, since a CRS technology is always the union of NIRS and NDRS hulls, the
goodness-of-fit test in their Proposition 2 always simplifies (not just for convex technologies).
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Proposition 3.3. Using Ei(x, y|.) and conditional on the optimal projection point, techno-

logy SΛ,V RS is globally characterized by:

(a) GCRS ⇔ Ei(x, y|NIRS) = Ei(x, y|NDRS) = Ei(x, y|V RS);

(b) GIRS ⇔ Ei(x, y|NIRS) < Ei(x, y|NDRS) ≤ Ei(x, y|V RS);

(c) GDRS ⇔ Ei(x, y|NDRS) < Ei(x, y|NIRS) ≤ Ei(x, y|V RS);

(d) GSCRS ⇔ Ei(x, y|NIRS) = Ei(x, y|NDRS) < Ei(x, y|V RS).

As stressed in Podinovski (2004a; 2004b), this case of global sub-constant returns to scale

cannot occur in convex technologies. Instead of solving for these three efficiency measures

using any of the solution methods listed above, we follow a specific theorem in Soleimani-

damaneh, Jahanshahloo, and Reshadi (2006, p. 1057) that proposes a simple enumeration

algorithm valid for nonconvex technologies solely to guarantee a maximal computational

advantage:

Proposition 3.4. For a given observation (xo, yo), let λjo = max{yro
yrj

: 1 ≤ r ≤ n, yro +

yrj > 0} and θjo = max{xijλ
jo

xio
: 1 ≤ i ≤ m,xio + xij > 0} for j = 1, . . . , K. Let

ENC
i (xo, yo|CRS) = min{θjo : j = 1, . . . K}. Now denote the set Ao = {k ∈ {1, . . . , K} :

θko = ENC
i (xo, yo|CRS)}. Assuming that (xo, yo) is an FDH-efficient point, then the follow-

ing conditions identify the situation of RTS at this point:

(a) There exists k ∈ Ao such that λko = 1⇒ GCRS;

(b) λko < 1 for each k ∈ Ao ⇒ GIRS;

(c) λko > 1 for each k ∈ Ao ⇒ GDRS;

(d) There exist k, k′ ∈ Ao such that λko > 1 and λk
′o < 1⇒ GSCRS.

Since the latter authors fail to consider the possibility of global sub-constant returns to

scale, which corresponds to their case (d), we have amended this proposition and labeled the

outcome with GSCRS, because of the presence of scale inefficiency in the DMU under eval-

uation (inefficiency which the authors fail to consider). Exactly the same criticism applies to

Soleimani-damaneh and Reshadi (2007, Theorem 1) and Soleimani-damaneh and Mostafaee

(2009, Theorem 1).

To the best of our knowledge, no article ever reported any empirical evidence on the

incidence of the global sub-constant returns to scale in relation to the other cases.

9



3.2 Local Returns to Scale

The exact relation between scale efficiency and scale elasticity has first been elaborated in

convex nonparametric production frontiers in the seminal analysis of Banker and Thrall

(1992). These authors prove explicitly the equivalence between the local method based on

the values of scale elasticity and the global method relying on the sign of the difference

between actual and most productive scale sizes (see Banker and Thrall (1992, Propositions

3 and 4, resp.)). Other contributions on this topic are, among others, those of Førsund

and Hjalmarsson (2004) and Førsund, Hjalmarsson, Krivonozhko, and Utkin (2007). The

potential empirical differences between both these concepts have been illustrated in, for

instance, Evanoff and Israilevich (1995).

However, as noted by Podinovski (2004a, p. 228)): “in a general non-convex technology

the RTS classes no longer play the role of global indicators”, because local maxima of the

RAP function are not necessarily global maxima. In other words, even for a differentiable

non-convex technology, global analysis of returns to scale must be separated from local

analysis (i.e. “RTS classes”). With regard to the latter, Podinovski (2004b, p. 176-177)

clearly points out that the use of the traditional notion of scale elasticity is only possible

for smooth differentiable technologies, but that this notion is undefined for FDH because

of its lack of smoothness. Instead, Podinovski (2004b, p. 176) suggests that the “type of

local RTS indicates whether the function of average productivity is increasing, decreasing

or stationary”. This motivates the approach adopted in this contribution, where the local

classification is based on the detection of relative optima (i.e., points with RAP greater than

one) in a neighborhood of the DMU under examination.

The reconstruction of production frontiers has been analyzed in a few contributions (see,

e.g., Hackman (2008, Ch. 10) for a brief review). Since the convex technologies in (3)

are convex polyhedra, facets can be enumerated so as to reconstruct the boundaries of the

technology. A two-dimensional projection is then defined relative to a particular point of

the technology. For example, Krivonozhko, Utkin, Volodin, Sablin, and Patrin (2004) offers

parametric optimization tools to reconstruct an intersection of the multidimensional convex

production frontier with a two-dimensional plane determined by any pair of given directions.

We simply adapt this same idea to a nonconvex technology. Moreover, to the best of our

knowledge, this is the first time that a computed section of an FDH technology is ever

displayed.

While for the nonconvex case we follow this same basic setup, we employ a specific

enumeration algorithm. Indeed, as Podinovski (2004a, p. 233) indicates, MPSS points can
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be determined by solving either for the MPSS definition (3.1) relative to a VRS technology

(SΛ,V RS), or a radial efficiency measure relative to a CRS technology (SΛ,CRS) (see also

Banker (1984, Proposition 1)). Following Soleimani-damaneh and Reshadi (2007, Lemma

1), the former solution is equivalent to the specific enumeration algorithm developed in

Soleimani-damaneh, Jahanshahloo, and Reshadi (2006, p. 1057) and Soleimani-damaneh

and Reshadi (2007, p. 2172-2173) for nonconvex technologies and it is based on the notion

of RAP.

It is important to point out that average productivity under convexity may be higher or

equal to average productivity under nonconvexity. To develop this intuition, one can look

at the two Figures 1 and 2 .

From a small numerical example we reconstructed in Figure 1 both a convex (part (a))

and nonconvex (part (b)) CRS technology in a two inputs single output space. In the convex

case, only two points span the three faces of the convex cone. In the nonconvex case, three

observations span the ridge lines emanating from the origin and determining the non-convex

cone because these observations operate under CRS. Based on these 3-D figures one may

infer that the convex cone contains the nonconvex cone.

This is clearly made visible by the section with a vertical plane along a ray through the

origin and along the single output depicted in the same Figure 1. Figure 2 depicts this latter

section in just two dimensions by a projection into the X1Y -plane: it is clear that average

productivity under convexity is higher than under nonconvexity along this particular section

of Figure 1.

FIGURES 1 AND 2 ABOUT HERE

4 Empirical Illustrations

In this section, we first present the data sets adopted from existing studies. Then, we

present empirical results on global returns to scale. Thereafter, we turn to a selection of

results focusing on local returns to scale.
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4.1 Secondary Data Sets Employed

To empirically illustrate these developments, we employ several existing data sets. Table 1

summarizes some key features of each data set: sample size, number of inputs and outputs,

and the sector. There is one small unbalanced panel (Färe, Grosskopf, and Logan (1983))

and four cross sections (Cesaroni (2011), Fan, Li, and Weersink (1996), Färe, Grosskopf,

Logan, and Lovell (1985), and Haag, Jaska, and Semple (1992)).

The main points to note are the following. There are three single output samples, and

two multiple-output samples. Sample sizes vary from very small to rather big. The data sets

have been sorted in Table 1 according to their sample size. In the other tables we maintain

this same order.

TABLE 1 ABOUT HERE

4.2 Global Returns to Scale

Turning to the determination of global returns to scale, we set ourselves two goals. First,

we want to document any eventual differences between convex and nonconvex technologies

in terms of the nature of returns to scale for individual observations. This has to the best

of our knowledge nowhere been reported. Second, it is important to evaluate the incidence

of the global sub-constant returns to scale case developed by Podinovski (2004a; 2004b).

Table 2 reports the basic decomposition of overall technical efficiency (OTE) into a scale

efficiency (SCE) and a technical efficiency (TE) component. This amounts to comparing

efficiency relative to CRS and VRS technologies. In particular, OTE = Ei(x, y|CRS),

TE = Ei(x, y|V RS) and SCE = Ei(x, y|CRS)/Ei(x, y|V RS). The first and second parts of

Table 2 report this decomposition for the convex and nonconvex family of technologies. For

each data set, there are three lines per efficiency component in a column: (i) the number

of efficient observations, (ii) the average efficiency, and (iii) the Li (1996) test statistic. We

comment on each of these three elements in turn.

TABLE 2 ABOUT HERE

For any efficiency component, it is well-known that the number of efficient observations

is higher or equal under nonconvexity compared to the convex case. This number turns out
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to be equal for the OTE and SCE components in two data sets: Färe, Grosskopf, Logan,

and Lovell (1985) and Färe, Grosskopf, and Logan (1983). Average efficiency is also known

to be higher or equal under nonconvexity, except for the SCE component since it is a ratio

derived from the other two components.6 This average turns out to be equal for the OTE

component in just one data set: Färe, Grosskopf, Logan, and Lovell (1985).

One can assess the differences between convex and nonconvex efficiency estimates by

using a test statistic initially proposed by Li (1996) that is valid for both dependent and

independent variables.7 The null hypothesis of this Li-test states that both convex and

nonconvex distributions for a given efficiency measure are equal. One can reject the null

hypothesis of equal distributions for all components for the Fan, Li, and Weersink (1996)

data set and for at least two components for all remaining data sets.8 Thus, it seems rather

safe to conclude that convex and nonconvex efficiency estimates differ for most components

and data sets.

The last column of Table 2 reports both the number of CRS efficient observations under

nonconvexity that are CRS inefficient under convexity, and the average amount of convexity-

related OTE (= EC
i (x, y|CRS)/ENC

i (x, y|CRS)) for these same observations.9 On the one

hand, this is the net gain in the number of MPSS points due to dropping convexity. It varies

between 0 and 42 observations among the data sets analysed. On the other hand, convexity-

related OTE indicates the amount of overall technical efficiency that can be attributed to

the convexity axiom. Not surprisingly, this convexity-related OTE equals zero in two data

sets: Färe, Grosskopf, Logan, and Lovell (1985) and Färe, Grosskopf, and Logan (1983).

On average, this amount varies between 0.856 and 0.972 when computed relative to the

concerned observations: thus, the convex estimates suggest further gains in overall technical

efficiency varying between 2.8% and 14.4%. Recall that Figure 2 represents the section shown

in both convex and nonconvex technologies depicted in Figure 1: it clearly illustrates these

cases where the nonconvex CRS technology is situated below the convex one. Thus, convex

CRS technologies may well overestimate potential gains in average productivity.

FIGURE 2 ABOUT HERE

6The multiplicative decomposition of OTE need not hold exactly at the sample level, since arithmetic
rather than geometric averages are reported.

7Dependency is a basic characteristic of extremum or frontier estimators, since efficiency measures depend,
among others, on sample size. Note that Fan and Ullah (1999) refine this same test.

8Note that this Li-test cannot be computed for the nonconvex TE component of Haag, Jaska, and Semple
(1992), since all observations are technically efficient and hence the kernel density cannot be estimated.

9The notion of convexity-related efficiency is introduced by Briec, Kerstens, and Vanden Eeckaut (2004):
for any input-oriented efficiency component it is the convex efficiency measure divided by the nonconvex
one.
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Tables 3 and 4 each have two major parts. The first and second parts of Table 3 report

on the percentage of observations relative to the sample size operating under increasing

(IRS), constant (CRS) and decreasing returns to scale (DRS) for the convex and nonconvex

technology respectively. Table 4 again has two major parts. The first part lists the efficient

observations on both technologies that share a common characterization of returns to scale

for each of the three cases. The second part focuses on conflicting cases: switches from IRS

to DRS (denoted IRS-DRS), from CRS to IRS (CRS-IRS), from CRS to DRS (CRS-DRS),

and the total percentage of these conflicts relative to the sample size.

One can draw the following conclusions. First, the amount of common efficient observa-

tions spanning both technologies is quite modest. Obviously, the amount of common CRS

observations is low because few observations are CRS efficient in the convex case in the first

place. While the percentage of common IRS observations is low, especially the DRS part of

technology is built on strikingly little common ground: almost no observations are in com-

mon. Second, apart from the first study with the smallest sample size, all other samples yield

some minimal to moderate conflict in classification between convex and nonconvex technolo-

gies. This conflict varies from a modest about 7% for the Färe, Grosskopf, and Logan (1983)

sample to a quite substantial about 40 % for the Haag, Jaska, and Semple (1992) case, all

three cases confounded. Third, the detailed sources of conflict in classification vary a lot

among the different samples. While for the Haag, Jaska, and Semple (1992) study the CRS-

IRS conflict dominates for about 20% of observations, for Cesaroni (2011), Färe, Grosskopf,

and Logan (1983) and Fan, Li, and Weersink (1996) the IRS-DRS case is dominant: for a

small about 7% for the first two cases to a substantial about 14% of observations for the

third sample.

TABLES 3 AND 4 ABOUT HERE

On the empirical evaluation of the incidence of the global sub-constant returns to scale

case we can be very brief. We found none in any of the five samples investigated. This

explains why this notion is not reported in any of the tables so far. It remains an open

question which conditions determine the existence as well as the empirical incidence of this

global sub-constant returns to scale case.

4.3 Local Returns to Scale

To contrast the above results to scale with some preliminary results on local returns to scale,

we have chosen to depict some typical observations selected from the Cesaroni (2011) sample.
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In particular, we have selected observation 40 because it is efficient in both the convex and

nonconvex CRS technologies. Then, we depict three observations that each represent one

type of conflict in the classification: observations 44, 63 and 82 stand for the conflict between

IRS-DRS, CRS-IRS and CRS-DRS respectively. To avoid repetition, the discussion of these

last two observations is available in the Appendix.

For each of these cases we show a pair of figures: the above represents the optimal (δ, γ)-

combinations of a section from the origin through the observation in input-output space;

the below depicts the evolution of RAP along the same radial section. The observations

under scrutiny are situated at the coordinates (1,1) in both the upper and lower parts of the

figures. The convex (nonconvex) case is shown as a dashed (continuous) line. Note that for

the RAP figure one must distinguish between points where RAP is smaller and larger than

unity: only the latter points indicate improvements with respect to the observation under

evaluation and are candidates for optima. RAP points smaller than unity form at best a

local optimum or sub-optimum for themselves in that RAP may be stationary at such points.

But, these points can never be optimal since the RAP level is below that of the observation

under examination.

We first comment on observation 40 depicted in Figure 3. Being a unique optimal MPSS

point labeled A, there is a close to optimal point labeled B to the right where RAP is

close to constant under convexity but varies a lot under nonconvexity. Beyond this point

B to the right RAP declines monotonously under convexity and more rapidly and close to

monotonously except for the end of the empirical range under nonconvexity. To the left of the

MPSS point A, RAP declines monotonously, albeit more rapidly again under nonconvexity.

FIGURE 3 ABOUT HERE

Next, we comment on observation 44 shown in Figure 4. As can be noticed from the

upper part, this observation is situated under DRS (IRS) under convexity (nonconvexity).

In the lower part, it is clearly visible that the MPSS point under nonconvexity labeled A is

situated to the right of unity, while the MPSS point under convexity labeled B is positioned

slightly to the left of unity and suggests a higher RAP than the nonconvex case. This is

a perfect illustration of the phenomenon depicted by a numerical example in Figure 2. To

both the right and especially the left from the nonconvex MPSS point A, there is quite some

variation: there are three local optima of RAP to the right and at least six local optima of

RAP to its left. Under convexity, the RAP curve suggests a smooth rise and decline around

its optimal point B.
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This case of observation 44 also illustrates the application of the FDH local classification-

criterion as proposed in Section 3.2. In a small neighborhood of this observation 44 (the

region 1 ± 6% in the lower part of Figure 4), at δ = 1.06, this is the point labeled C, there

is only one point ensuring a RAP greater than one (1.001), such that the observation is

classified as increasing returns to scale (even locally). However, we can notice that if the

size of the interval under consideration were to be enlarged to include the relative maxima

on the left (situated at δ = 0.73), this interval would also include another relative maxima

on the right (δ = 1.19), then we would have a case of local sub-constant returns to scale:

i.e., a situation in which average productivity can be locally increased by both reducing and

increasing the DMU’s scale size. Such outcome is impossible in a convex technology.

FIGURE 4 ABOUT HERE

Summarizing these local results, one can draw two preliminary conclusions. First, the

evolution of RAP under nonconvexity is not smooth at all and reveals a variety of local

optima that remain hidden in the smooth increase and subsequently decrease of RAP in

the convex case. Remedying issues of suboptimal scale size is rather straightforward under

convexity. Any diagnosis of IRS or DRS leads to an unambiguous recommendation to either

increase or decrease the scale of operations, whereby any step in the right direction mono-

tonously increases or decreases RAP respectively. Under nonconvexity remedying the scale

of operations is much harder and depends on choosing the right step size to either increase

or decrease the scaling of the unit under evaluation. In empirical applications, there seem

to be many areas where the lack of data is filled up by the convexity axiom, while the non-

convex approach clearly reveal the gaps in the empirical range of the data and our ensuing

lack of knowledge about the technology. Of course, it cannot be excluded that sector spe-

cialists (managers, engineers, regulators, etc) may have an a priori understanding on which

ranges of operation are actually feasible even though these are currently not supported by

the empirical range of the data.

Second, these local returns to scale results are hard to summarize neatly using standard

descriptive statistics. While their local nature lends itself excellently for depiction, this

approach carries the risk that an empirical analysis becomes somehow casuistic and does not

allow to draw any general conclusions at the sample level. Lacking standards to report the

results of nonconvex analysis in economics, this problem cannot be easily solved in the short

run.
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5 Conclusions

Starting from the seminal contributions of Podinovski (2004a; 2004b) who characterizes both

the notions of global and local returns to scale for nonconvex technologies, this contribution

leads to three main conclusions.

First, we have clearly empirically established that the characterization of returns to scale

on convex and nonconvex technologies may yield conflicting advice for substantial parts

of samples. This confirms that Podinovski (2004a; 2004b) was certainly right in further

scrutinizing the notion of returns to scale for nonconvex nonparametric technologies.

Second, while Podinovski (2004a; 2004b) convincingly argued for the existence a fourth

type of global sub-constant returns to scale case complementing the three traditional cases

(constant, decreasing and increasing returns to scale), our empirical tests reveal that none

of the five secondary data sets analyzed contains a single observation that experiences such

global sub-constant returns to scale. Which conditions determine the existence as well as

the empirical incidence of this global sub-constant returns to scale case remains a question

for future research.

Third, we have made a start to explore the differences between global and local returns

to scale characterizations on FDH models. Especially the local results are revealing in that

these clearly show how RAP evolves nonsmoothly and nonmonotonously under nonconvexity,

while it is smooth and monotonous for convex nonparametric technologies. As spelled out

earlier, this makes remedying scale deficiencies much harder under nonconvexity.

To the best of our knowledge, this is the first contribution that has managed to shed some

light on all these issues. Of course, much more remains to be done. For instance, outliers

are an issue for all nonparametric technology specifications and it could be interesting to

evaluate how these affect the empirical differences as to returns to scale observed between

convex and nonconvex technologies. As another example, a more refined definition of local

returns to scale, including the case of sub-constant returns to scale, could prove insightful

when analyzing nonconvex nonparametric technologies. Finally, while this research has been

confined to analysing changes along a radial section in input-output space, keeping in mind

that some managers may well prefer mimicking actual observations (e.g., Halme, Korhonen,

and Eskelinen (2014)), it could be interesting to also develop an average productivity notion

along a non-radial rather than a radial path.10

10See, e.g., Chambers and Mitchell (2001) for other examples on the importance of non-radial changes.
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Appendix: Empirical Illustrations on Local Returns to

Scale (Section 4.3)

Turning to observation 63 shown in Figure 5, one can observe from the upper part that this

observation labeled A is situated under IRS (CRS) under convexity (nonconvexity). Being a

unique optimal MPSS point under nonconvexity, note that RAP is smaller than unity both to

the left and right of this observation. The MPSS point under convexity labeled B is situated

slightly to the right of the nonconvex case and is a bit higher than unity. This suggests that

RAP under convexity can slightly increase to the right of the nonconvex optimum. To both

the left and right from the nonconvex MPSS point A, there is some variation: there is one

local optimum of RAP to the left and three local optima of RAP to its right. The convex

case again suggests a smooth rise and decline of RAP around its optimal point B.

FIGURE 5 ABOUT HERE

Finally, observation 82 is displayed in Figure 6. From the upper part, one can verify that

this observation labeled A is situated under DRS (CRS) under convexity (nonconvexity).

Again being a unique optimal MPSS point under nonconvexity, RAP is smaller than unity

both to the left and right of this observation. The corresponding MPSS point under convexity

labeled B is now situated slightly to the left of the nonconvex case and is just a little bit

higher than unity, suggesting that RAP under convexity can slightly increase to the left of

the nonconvex MPSS point A. Again, to both the left and right from the nonconvex MPSS

point A, there is some variation, while the convex case just suggests a smooth increase and

decrease of RAP around its optimal point B.

FIGURE 6 ABOUT HERE
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Figure 1: Two Inputs Single Output (a) Convex and (b) Nonconvex CRS Technology

(a) (b)
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Figure 2: Single Input Single Output Representation of Section of Convex and Nonconvex
CRS Technologies
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Figure 3: Representation of Radial Section for Observation 40 in Input-Output Space (a)
and Evolution of RAP (b)

(a)

(b)
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Figure 4: Representation of Radial Section for Observation 44 in Input-Output Space (a)
and Evolution of RAP (b)

(a)

(b)
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Figure 5: Representation of Radial Section for Observation 63 in Input-Output Space (a)
and Evolution of RAP (b)

(a)

(b)
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Figure 6: Representation of Radial Section for Observation 82 in Input-Output Space (a)
and Evolution of RAP (b)

(a)

(b)

28



Article Sample # Inp. # Outp. Sector Remarks

Färe et al (85) 32 3 1 Electricity

Haag et al (92) 41 4 2 Agriculture

Färe et al (83) 86 3 1 Electricity Unbalanced (N=20 & T=5)

Cesaroni (11) 92 2 5 Car registration

Fan et al (96) 471 3 1 Agriculture

Table 1: Sources of Empirical Data

Sample Convexity Nonconvexity OTENC&

OTE SCE TE OTE SCE TE ¬OTEC

Färe et al (85) #Eff. obs. 2 2 9 2 2 29 0

Mean 0.905 0.952 0.951 0.905 0.906 0.998 0.000

Li-test† 0.000 6.887∗∗∗ 8.533∗∗∗

Haag et al (92) #Eff. obs. 8 8 10 20 20 41 12

Mean 0.841 0.959 0.880 0.923 0.923 1.000 0.856

Li-test† 4.208∗∗∗ 2.270∗∗ na

Färe et al (83) #Eff. obs. 4 4 18 4 4 68 0

Mean 0.897 0.966 0.930 0.898 0.907 0.990 0.000

Li-test† 0.000 21.926∗∗∗ 26.032∗∗∗

Cesaroni (11) #Eff. obs. 9 9 15 12 12 56 3

Mean 0.652 0.876 0.733 0.702 0.761 0.911 0.972

Li-test† 0.313 5.547∗∗∗ 21.123∗∗∗

Fan et al (96) #Eff. obs. 18 18 49 60 60 164 42

Mean 0.765 0.945 0.811 0.841 0.921 0.913 0.924

Li-test† 18.459∗∗∗ 19.999∗∗∗ 52.878∗∗∗

† Li test: critical values at 1% level = 2.33 (∗∗∗); 5% level = 1.64 (∗∗); 10% level = 1.28 (∗).

Table 2: Decomposition of Overall Technical Efficiency: Convex and Nonconvex

Sample Convexity Nonconvexity

IRS CRS DRS IRS CRS DRS

Färe et al (85) 78.13% 6.25% 15.63% 78.13% 6.25% 15.63%

Haag et al (92) 53.66% 19.51% 26.83% 43.90% 48.78% 7.32%

Färe et al (83) 66.28% 4.65% 29.07% 73.26% 4.65% 22.09%

Cesaroni (11) 83.70% 9.78% 6.52% 78.26% 13.04% 8.70%

Fan et al (96) 52.44% 3.82% 43.74% 52.23% 12.74% 35.03%

Table 3: Returns to Scale on Convex and Nonconvex Technologies: Basic Results
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Sample # Common effic. obs. Conflicting cases

IRS CRS DRS IRS-DRS CRS-IRS CRS-DRS Total conflicts

Färe et al (85) 15.63% 6.25% 6.25% 0.00% 0.00% 0.00% 0.00%

Haag et al (92) 4.88% 19.51% 0.00% 9.76% 19.51% 9.76% 39.02%

Färe et al (83) 16.28% 4.65% 0.00% 6.98% 0.00% 0.00% 6.98%

Cesaroni (11) 2.17% 9.78% 1.09% 7.61% 2.17% 1.09% 10.87%

Fan et al (96) 1.70% 3.82% 1.91% 13.80% 3.40% 5.52% 22.72%

Table 4: Returns to Scale on Convex and Nonconvex Technologies: Common Efficient Ob-
servations and Conflicts
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