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Abstract

This contribution reconsiders the construction of metafrontiers based on underlying

group frontiers using non-parametric technology specifications. We argue that the

large majority of articles applying this popular methodology in fact assesses efficiency

measures relative to a potentially poor approximation of the metafrontier. We develop

a refined methodology for non-parametric specifications of technology yielding a proper

non-convex metafrontier. Furthermore, this methodology is empirically applied on a

secondary data set to verify the estimation of metatechnology ratios (as defined in

O’Donnell, Rao, and Battese (2008)) as well as to illustrate the potential bias of using

the currently established methods.
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1 Introduction

Organisations in different industries, regions and countries can face very different production

options at different points in time. Differences in so-called production possibilities sets may

be due to differences in available technologies (i.e., differences in the methods that are

available to transform inputs into outputs) and/or to differences in production environments

(e.g., geography, climate, economic infrastructure). This contribution is concerned with one

particular method for accounting for this type of heterogeneity when estimating production

relationships.

The problem of accounting for heterogeneity when estimating production relationships is

quite old. One solution that was initiated by Hayami and Ruttan (1970a) involves estimating

some type of metaproduction function. This metaproduction function concept has been

empirically applied in several agricultural studies comparing mainly country-level data (e.g.,

Binswanger, Yang, Bowers, and Mundlak (1987) and Lau and Yotopoulos (1989), among

others). An empirical survey to this literature is provided by Trueblood (1989).

Hayami and Ruttan (1970a, p. 898) state: “We may call the envelope of all known and

potentially discoverable activities a secular or “meta-production function.”” The secular

period of production, which is distinct from the short and long run, describes a situation

without constraints given by the available fund of technical knowledge and with access to all

potentially discoverable knowledge. The basic hypothesis is that all producers have potential

access to the same technology, but each may choose to operate on a different part of it

depending on specific circumstances (quantities and qualities of natural endowments, relative

input prices, basic economic environment, etc.). Thus, each country can produce a given

level of output using different factor proportions. Adjustments in input mixes in response

to changes in relative input prices represent movements along the isoquant of the meta-

production function which itself is composed of a series of less elastic isoquants. Trueblood

(1989, Figure 1) and Hayami and Ruttan (1970b, Figure 5) contain figures depicting the idea

of a metaproduction isoquant enveloping a series of less elastic isoquants. At least part of

this literature allows for production below the production function, i.e., technical inefficiency

(e.g., Lau and Yotopoulos (1989)).

More recently, these basic ideas have been refined and transposed into a frontier produc-

tion framework by Battese and Rao (2002) and Battese, Rao, and O’Donnell (2004) using

stochastic frontier estimators. The seminal article refining the loose ends in the methodology

and finalising the formal framework for making efficiency comparisons across groups of firms
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using both stochastic frontiers and non-parametric, deterministic frontier analysis is clearly

O’Donnell, Rao, and Battese (2008).

Thereafter, this metafrontier approach has been widely applied across sectors and even

disciplines. Non-parametric metafrontier models have been estimated for sectors varying

from agriculture (e.g., Chen and Song (2008)) over banking (e.g., Kontolaimou and Tsekouras

(2010)), hotels (Assaf, Barros, and Josiassen (2012) and Huang, Ting, Lin, and Lin (2013),

among others) and schools (e.g., Thieme, Prior, and Tortosa-Ausina (2013)) to water utilit-

ies (e.g., De Witte and Marques (2009)) and wastewater treatment technologies (e.g., Sala-

Garrido, Molinos-Senante, and Hernández-Sancho (2011)). Empirical metafrontier studies

based on stochastic frontier analysis have been presented by Bos and Schmiedel (2007),

Lee and Hwang (2011) and Moreira and Bravo-Ureta (2010), among others. Meanwhile,

this basic metafrontier framework has been extended in several directions: one example is

the transposition to a cost (rather than production) frontier framework (e.g., Huang and

Fu (2013)); another example is the estimation of the popular Malmquist productivity in-

dices relative to metafrontiers (see, e.g., Oh and Lee (2010) or Afsharian and Ahn (2015)

for a primal index and Thanassoulis, Khanjani Shiraz, and Maniadakis (2015) for a dual

approach); a final example is the introduction of more elaborate metafrontier efficiency de-

compositions (see Kounetas, Mourtos, and Tsekouras (2009)).1 Note that some work in the

literature does not refer explicitly to the metafrontier framework, but implicitly borrows the

basic idea of an overall frontier defined as a union of different system or group technologies.

Examples include Cooper, Seiford, and Tone (2007, Section 7.5) who talk about combining

different systems and Kittelsen, Winsnes, Anthun, Goude, Hope, Häkkinen, Kalseth, Kils-

mark, Medin, Rehnberg, and Rättö (2015) who pragmatically define a common frontier over

several Nordic countries when comparing hospital productivity.

Reliable estimates of the metafrontier allow to compute reliable estimates of performance

measures (e.g., technical efficiency, productivity change). In practice, it is common to use

assumptions about production possibility sets to frame the estimation of the metafrontier.

A key feature of the O’Donnell, Rao, and Battese (2008) framework is that the metafrontier

is explicitly conceived as a union of the underlying group technologies. Basic non-parametric

production models are most often underpinned by the assumption that input and output sets

as well as the graph of the technology are convex. For instance, convexity of technology means

that if two input vectors can produce two output vectors, then any linear combination of

these input vectors can also produce some linear combination of these output vectors. When

1Sometimes this Malmquist productivity index, which is most frequently estimated within a frontier-
based framework, has been combined with the more traditional metaproduction function approach: see, e.g.,
Fulginiti and Perrin (1998).
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group technologies are convex, then the metafrontier as a union of these group technologies

need not be convex (see O’Donnell, Rao, and Battese (2008)). However, O’Donnell, Rao, and

Battese (2008) suggest estimating the metafrontier as a convex non-parametric technology

based on the union of all observations over all groups. This convexification of a possibly

non-convex metafrontier may yield a bias that hitherto has hardly ever been documented in

the literature.

However, if this convexity assumption is not applicable, then non-parametric estimates

of the boundary of the technology are biased. Therefore, associated measures of technical

efficiency or productivity change will also be become unreliable. This could potentially

undermine the credibility of policies (e.g., price cap (or RPI-X) regulation) where these

associated performance measures are used.

Therefore, the main objectives of this contribution are three-fold. First, we clarify and

restate the metafrontier framework as developed in O’Donnell, Rao, and Battese (2008) for

convex non-parametric group technologies yielding a non-convex metafrontier. Furthermore,

we document the potential bias in convexifying this non-convex metafrontier. Second, in

case convexity is not suitable, we start from non-convex non-parametric group technolo-

gies (known as Free Disposal Hulls) to construct another non-convex metafrontier. Third,

the similarities and differences of both convex and non-convex group technologies and the

resulting different non-convex metafrontiers are empirically illustrated.

To achieve these objectives, this contribution is structured as follows. Section 2 defines

basic concepts and measures of performance associated with the selection and use of tech-

nologies. Section 3 explains that these performance measures have the same mathematical

structure, but not necessarily the same interpretation, when firms operate in different pro-

duction environments, or, more generally, whenever firms can be classified into a partition

of groups. Section 4 focuses on nonparametric representations of group frontiers and meta-

frontiers. The key methodological question here is whether the metafrontier can be assumed

to be convex rather than non-convex. Section 5 contains an empirical illustration based

on a secondary data set. Section 6 summarises the main contributions and outlines future

research issues.
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2 Technologies, Metatechnologies and Metatechnology

Ratios

2.1 Technologies

In O’Donnell (2014, p. 4), a technology is defined as a “technique, process or method for

transforming inputs into outputs.” We adopt this definition here and we view a technology

as a type of intellectual capital. For all practical intents and purposes, it is convenient to

think of a technology as a book of instructions, or recipes.

Consider in period t an input vector xt = (xt
1, . . . , x

t
m) ∈ Rm

+ , an output vector yt =

(yt1, . . . , y
t
n) ∈ Rn

+ and a set of St observations At = {(xt
1, y

t
1) , . . . , (x

t
St , ytSt)} ∈ Rm+n

+ .2

We consider the case where this set of observations At in period t can be partitioned into

Gt mutually exclusive groups At
g (Gt > 1 and g = 1, . . . , Gt) each having a subset of St

g

observations, where (i) At
g ⊂ At, (ii) At

g ∩At
h = ∅ for g ̸= h, and (iii) ∪Gt

g=1A
t
g = At. We also

introduce the index set J t
g = {k : (xt

k, y
t
k) ∈ At

g}.

The set of all pairs of input and output vectors that are feasible using the technology

determined by At
g in period t is:

T t
g ≡ {(xt, yt) ∈ Rm+n

+ : xt can produce yt using the technology determined by At
g}. (1)

This technology is referred to as technology g and its boundary as technology g frontier.

Equivalent representations of T t
g include technology-specific output and input sets. Given

our focus on input-oriented efficiency measurement later on, we concentrate on the input set.

A technology-specific input set contains all input vectors that can produce a given amount

of output yt using a given technology g in period t:

Lt
g(y

t) ≡
{
xt : (xt, yt) ∈ T t

g

}
. (2)

Under weak regularity conditions, this set can also be represented using the following

2Drawing from the engineering economics literature, one can also complement observed data with so-
called pseudo-data generated by engineering models to obtain larger sample sizes (see Griffin (1979)). This
view is not without criticism (e.g., Maddala and Roberts (1981)).
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technology-specific input distance function:

IDt
g(x

t, yt) ≡ sup
λ∈R+

{
λ : xt/λ ∈ Lt

g(y
t)
}
. (3)

This function is nonnegative, linearly homogeneous in inputs, and no less than unity for all

xt ∈ Lt
g(y

t). An associated measure of residual input-oriented technical efficiency (RITE)

is:

RITEt
g(x

t, yt) ≡ 1/IDt
g(x

t, yt). (4)

This is a radial measure of efficiency that indicates the maximum equiproportionate reduction

in xt which still allows production of yt using technology g in period t. The sense in which

it is a residual measure is explained in Subsection 2.3.

2.2 Metatechnologies

If we view a technology as a recipe, then we can follow Caselli and Coleman (2006, p. 509)

and talk about “a library, containing blueprints, or recipes to turn inputs into outputs”. In

this contribution, the set of technologies (or recipes) available in period t is referred to as

the period t metatechnology.3

The period t metatechnology is the set of all input and output vector pairs that are

feasible by at least one of the g technologies available:

MT t ≡ {(xt, yt) ∈ Rm+n
+ : ∃g ∈ {1, . . . , Gt} such that xt can produce yt using technology g}.

(5)

An equivalent definition is:

MT t ≡ T t
1 ∪ T t

2 ∪ · · · ∪ T t
Gt . (6)

The boundary of this metatechnology is referred to as the period t metafrontier. Equivalent

representations of meta-“production possibilities sets” (or metatechnologies for short) include

meta-output and meta-input correspondences. The meta-input correspondence, for example,

contains all input vectors that can produce a given amount of output yt using a given period

t metatechnology:

MLt(yt) ≡
{
xt : (xt, yt) ∈ MT t

}
. (7)

3Note that our notions of a technology and a metatechnology are very broad. Other concepts like General
Purpose Technologies have a much more restricted definition: see, e.g., Bresnahan and Trajtenberg (2005)
or Lipsey, Carlaw, and Bekar (2005) for details.
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An equivalent definition is:

MLt(yt) ≡ Lt
1(y

t) ∪ Lt
2(y

t) ∪ · · · ∪ Lt
Gt(yt). (8)

Again, under weak regularity conditions, a meta-input correspondence can be represented

using a period t input distance function:

IDt(xt, yt) ≡ sup
λ∈R+

{
λ : xt/λ ∈ MLt(yt)

}
. (9)

An equivalent definition is:

IDt(xt, yt) ≡ max{IDt
1(x

t, yt), IDt
2(x

t, yt), . . . , IDt
Gt(xt, yt)}. (10)

Again, IDt(xt, yt) is nonnegative, linearly homogeneous in inputs, and no less than unity

for all xt ∈ MLt(yt). The reciprocal of IDt(xt, yt) is a common measure of input-oriented

technical efficiency (ITE). To be precise, for a firm using inputs xt to produce outputs yt

in period t, its ITE is defined as follows:

ITEt(xt, yt) ≡ 1/IDt(xt, yt). (11)

An equivalent definition is

ITEt(xt, yt) ≡ min{RITEt
1(x

t, yt), RITEt
2(x

t, yt), . . . , RITEt
Gt(xt, yt)}. (12)

Again, ITEt(xt, yt) is a radial measure of efficiency that lies in the closed unit interval. It

indicates the maximum equiproportionate reduction in xt which still allows production of yt

using the period t metatechnology. An equivalent output-oriented efficiency measure based

on a similar enumeration over groups has recently been defined in Afsharian and Ahn (2015).

Note that it can be undefined for some input-output combinations that are not contained in

the technology metaset T t (see Briec and Kerstens (2009) for more details on infeasibilities).

2.3 Metatechnology Ratios

A metatechnology ratio is a measure indicating whether a firm has chosen the most product-

ive technology that is available. Depending on measurement-orientation, different types of

metatechnology ratios are available. For example, an input-oriented metatechnology ratio

(IMR) is defined using input distance functions. To be precise, for a firm using inputs xt to
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produce outputs yt using technology g in period t, its IMR is defined as:

IMRt
g(x

t, yt) ≡ IDt
g(x

t, yt)/IDt(xt, yt). (13)

Since IDt
g(x

t, yt) ≤ IDt(xt, yt), IMRt
g(x

t, yt) ≤ 1. An equivalent definition is:

IMRt
g(x

t, yt) ≡ ITEt(xt, yt)/RITEt
g(x

t, yt). (14)

This leads to the following convenient decomposition of the ITE for a particular observation:

ITEt(xt, yt) = IMRt
g(x

t, yt)×RITEt
g(x

t, yt). (15)

Thus, technical efficiency measured with respect to the metafrontier can be decomposed into

the product of a metatechnology ratio (measuring how close a technology-specific frontier is

to the metafrontier) and a measure of residual technical efficiency (measuring how close a

firm is operating to the group-specific frontier). Equation (15) is the time dependent input

analogue of the output-oriented efficiency decomposition in O’Donnell, Rao, and Battese

(2008, Eq. 10). Observe that RITE is a residual measure in the sense that it is the

component of ITE that remains after accounting for the IMR (i.e., for technology choice).

It can be viewed as the component of ITE that is due to poor use of the chosen technology

(i.e., failure to follow the recipe). Like measures of ITE and RITE, the IMR lies in the

closed unit interval. This measure of performance is the time dependent input analogue of

the output-oriented metatechnology ratio defined by O’Donnell, Rao, and Battese (2008, Eq.

9).4

3 Other Types of Metafrontiers

The metafrontier concept is relevant in other empirical contexts too. We first develop the

case where technologies depend on the environment. Then, we discuss the role of the time

dimension in the metafrontier framework. Thereafter, we establish some other links with the

existing literature thereby potentially extending the scope for application of the metafrontier

framework.

For a simple illustration, suppose there is only one agricultural technology available in

4If the metatechnology is time-invariant (i.e., if there is no technical change, or no new technologies are
discovered and no existing technologies are lost), then our t notation can be suppressed and the measure
defined by O’Donnell, Rao, and Battese (2008, Eq. 9) results.
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period t, and that this technology works better in some environments than in others (e.g.,

there is only one method for growing a particular type of organism, and this method works

better in a cool-dry environment than it does in a warm-humid environment). Suppose that

the number of production environments (or states of nature) is finite. The set of all input

and output vector pairs that are feasible in environment g in period t can be written as:

T t
g ≡ {(xt, yt) ∈ Rm+n

+ : xt can produce yt in environment g in period t}. (16)

This environment-specific (or state-contingent) technology has exactly the same mathem-

atical structure as the group-specific technology (1). Associated environment-specific input

sets and distance functions are therefore given by (2) and (3). By extension, the set of all

input and output vector pairs that are feasible in period t is MT t ≡ T t
1 ∪T t

2 ∪· · ·∪T t
Gt where

Gt is now interpreted as the number of states of nature that can occur in period t. The

associated meta-input correspondence, distance function and measure of ITE, for example,

are still given by (7) to (11). Importantly, the boundary of MT t is still a metafrontier.

The message to take from this discussion is that various functions and measures of per-

formance associated with different production environments have the same mathematical

structure, but not necessarily the same interpretation, as those associated with the selection

and use of technologies. For example, the input-oriented meta-technology ratio should now

be interpreted/described as an input-oriented meta-environment ratio.

From a mathematical viewpoint, the distinction between technologies and environments is

immaterial. The distinguishing feature of metafrontier models is that firms can be partitioned

into groups. In the remainder of this contribution, we avoid referring to sets and frontiers as

technology-specific or environment-specific (state-contingent) sets and frontiers. Instead we

refer to them as group-specific sets and frontiers (or simply group sets and frontiers). Thus,

we will talk about group technologies, group distance functions, and group frontiers.

In a metafrontier framework, assumptions on the number of groups over time translate

into well-known hypotheses about the nature of technological change (see, e.g., Tulkens and

Vanden Eeckaut (1995)). One can distinguish three cases. First, if one assumes that the

number of groups can both increase or decrease over time (e.g., since both technical progress

and technical regress are possible), then the period t metatechnology is estimated using

data points from this period t only. Such an contemporaneous approach is used when, for

instance, computing Malmquist productivity indices using metafrontiers (e.g., Oh and Lee

(2010)). Second, if the number of groups can increase over time but it can never decrease

(e.g., since only technical progress is possible, but technical regress is excluded), then the
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period t metatechnology is estimated using data points from all periods up to and including

period t. Such a sequential approach dates back to, e.g., Diewert (1980). Finally, if all

groups exist in all time periods (e.g., if there is no technical change), then the period t

metatechnology is estimated using data points from all periods. This is also known as the

intertemporal approach. Note that if there is no technical change, then the “t” notation

maintained so far can be suppressed and most definitions somewhat simplify.

Other links with the existing literature can be made that reveal the wide scope for ap-

plication of the metafrontier framework as sketched so far. First, there is a limited literature

that uses so-called cross-frontier analysis as initially proposed by Cummins, Weiss, and Zi

(1999). Upon scrutiny, the formal analysis is structurally similar to the above metafrontier

framework, but the analysis seems to be limited to two groups only. One can conjecture that

if more than two groups would be involved, the metafrontier framework should be reinvented.

Empirical applications along these lines seem mainly focusing on the insurance sector (e.g.,

Biener and Eling (2012), Brockett, Chang, Rousseau, Semple, and Yang (2004), Erhemjamts

and Leverty (2010), among others).

Second, there is a wide variety of proposals to distinguish heterogeneity among production

units in a frontier context using some multivariate statistical methodology to classify the

units in the sample into either some natural number of groups (e.g., using some variant

of cluster analysis) or some set of existing groups (e.g., using discriminant analysis and its

variations). Examples include Samoilenko and Osei-Bryson (2010) and Llorca, Orea, and

Pollitt (2014), among others. Along similar lines, frontier estimates have been used in a

variety of ways to distinguish some strategic groups (e.g., Athanassopoulos (2003), Warning

(2004), among others). As long as these groups form a partition, the metafrontier framework

can be applied to compare these groups.

4 The Metafrontier is Non-Convex: An Illustration

Using Non-Parametric Technology Specifications

How can group frontiers and metafrontiers be estimated using non-parametric methods? For

the empirical application where we use an intertemporal frontier, we implicitly assume that

the number of groups is constant over time such that the metatechnology is estimated using

data points from all periods. Hence, while we could suppress the “t” notation, for the sake

of consistency in the remainder this “t” notation is maintained.
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This section starts from a discussion of traditional convex non-parametric group tech-

nologies and argues and illustrates that the associated metafrontier is almost inevitably

non-convex. Thereafter, we question more systematically the convexity axiom at both the

level of the group and metatechnologies by specifying Free Disposal Hulls (FDH) as well as

the union of such FDH group frontiers.

4.1 Non-Parametric Group Frontiers

This section outlines the estimation of the group frontiers. For this purpose, it is con-

venient to introduce observation subscripts into the notation so that, for example, xt
i =

(xt
1i, . . . , x

t
mi) ∈ Rm

+ now denotes the input vector of firm i in period t. Recall that At
g de-

notes the set of input-output combinations of those firms belonging to group g in period t

having cardinality St
g. Thus, for example, if firms 1, 3 and 8 are the only firms that belong

to group 4 in period t, then At
4 = {(xt

1, y
t
1), (x

t
3, y

t
3), (x

t
8, y

t
8)} and St

4 = 3. The corresponding

index set J t
4 = {1, 3, 8}.

A non-parametric estimate of the group-g frontier can be obtained by enveloping the St
g

data points in group g while maintaining some basic regularity assumptions (see Hackman

(2008) or Ray (2004)). In the remainder of this contribution, we assume the group-g pro-

duction possibility set or technology satisfies some combination of the following conventional

assumptions:5

(T.1) (0, 0) ∈ T t
g and (0, y) /∈ T t

g if y ≥ 0.

(T.2) T t
g is a closed subset of Rm+n

+ .

(T.3) If (x, y) ∈ T t
g and (x′, y′) ∈ Rm+n

+ , then (x′,−y′) ≥ (x,−y) ⇒ (x′, y′) ∈ T t
g .

(T.4) T t
g is convex.

These rather traditional axioms on the group technology state that: (i) inaction is feasible,

and there is no free lunch, (ii) the set of feasible output input combinations contains all

the points on its boundary (closedness), (iii) inputs and outputs are freely (or strongly)

disposable, and (iv) the production possibilities set is convex (see, e.g., Hackman (2008) for

details). This last assumption is not always maintained in this contribution.

5If there would only be one technology available (which is excluded a priori since Gt > 1), then the “g”
notation can be suppressed to yield the axioms found in most textbooks.
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The standard nonparametric estimator of a convex (C), strongly disposable group-g tech-

nology that exhibits variable returns to scale (VRS) is:

T t,C
g =

{
(xt, yt) ∈ Rm+n

+ :
∑
s∈Jt

g

λsx
t
s ≤ xt,

∑
s∈Jt

g

λsy
t
s ≥ yt,

∑
s∈Jt

g

λs = 1, λs ∈ R+,∀s ∈ J t
g

}
.

(17)

This estimator satisfying (T.1)–(T.4) is commonly known under the label Data Envelopment

Analysis (DEA). While the single output version of this estimator goes back to at least Afriat

(1972), the general multi-output version appears to have been introduced to the literature by

Banker, Charnes, and Cooper (1984) and Färe, Grosskopf, and Lovell (1983). This VRS DEA

estimator (17) can be used to construct an estimator of the group-g input distance function

(3) and the associated measure of RITE (4). This requires solving for each evaluated

observation a linear programming (LP) problem (see Hackman (2008) or Ray (2004)).

In case the convexity axiom (T.4) is disputed, a non-convex version of the above estimator

satisfying (T.1)–(T.3) can be specified as follows:

T t,NC
g =

{
(xt, yt) ∈ Rm+n

+ :
∑
s∈Jt

g

λsx
t
s ≤ xt,

∑
s∈Jt

g

λsy
t
s ≥ yt,

∑
s∈Jt

g

λs = 1, λs ∈ {0, 1} , ∀s ∈ J t
g

}
.

(18)

This estimator is commonly known as the Free Disposal Hull (FDH) estimator. The single

output version of this estimator also goes back to Afriat (1972). Again, this estimator

can be used to construct an estimator of the group-g input distance function (3) and the

associated measure of RITE (4). This requires solving a mixed integer program for each

evaluated observation. However, Leleu (2006) and Briec, Kerstens, and Vanden Eeckaut

(2004) propose an LP solution and a closed form solution based on an implicit enumeration

strategy, respectively.

Geometrically, the boundary of the set T t,NC
g is a simple monotonic hull of the St

g data

points of At
g (denotedmon(At

g)), while the boundary of the set T t,C
g is a convexified version of

this same monotonic hull (denoted cm(At
g)). Formally, the monotonic hull of a setAt

g ⊂ Rm+n
+

is defined as:

mon(At
g) ≡ (At

g + (Rm
+ × Rn

−)) ∩ Rm+n
+ . (19)

The convex monotonic hull of the same set is:

cm(At
g) ≡ mon(At

g) ∪ con(At
g), (20)
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where the convex hull con(At
g) is defined:

con(At
g) ≡ {z ∈ Rm+n

+ : z = αz1 + (1− α)z2 for all z1, z2 ∈ At
g, α ∈ [0, 1]}. (21)

Figure 1 illustrates these notions on a set A containing 32 observations in the single input-

output case. The convex hull con(A) is the closed region with dashed edge starting from

observation 1 and continuing all the way round till observation 1 again. The monotonic hull

mon(A) consists of the region located below and to the right of the solid polyline starting

vertical at the bottom towards observation 3 and then continuing to observations 2, 1, 23,

15, 31 and 16 using horizontal and vertical connections to end horizontally from observation

16 onwards. Unifying both these regions results in the convex monotonic hull cm(A). This

is the region below and to the right of the polyline starting with the vertical solid line to

observation 2, then continuing via the dashed lines to observations 1, 15 and 16 to end with

the horizontal solid line from observations 16 onwards.

Figure 1 about here

4.2 Non-Parametric Metafrontier

Turning to the specification and estimation of the metafrontier, since things are slightly more

difficult, we prefer to start with a simple single-input single-output illustration. Figure 2

depicts a period t metatechnology consisting of the union of two convex group technologies

(i.e., MT t = T t
1 ∪ T t

2). In this figure, the convex technology T t
1 (resp. T t

2) consists of

all points between the horizontal axis and the frontier A1B1F1H1I1 (resp. A2B2F2H2I2).

The period t metatechnology MT t consists of all points between the horizontal axis and

the frontier A1B1PB2F2H2I2. While each of the group technologies is convex, the period t

metatechnology clearly is non-convex and no firm can produce at a point outside this set, e.g.,

in the region determined by B1PB2F2B1). The convexified version of this metatechnology

is obtained by exactly adding this region. If one would add an additional technology in

period t, then the period t metatechnology will only in very rare occasions become a convex

set. While a third technology may fill up part of the region determined by B1PB2F2B1,

depending on its range relative to both existing technologies it is likely to create further

non-convexities to the left or to the right of the existing one.

Obviously, one must realise that in a multiple input and multiple output space (rather

than in a single input single output case) a union of more than two group technologies is only

by sheer coincidence gone end up yielding a convex metafrontier. The most likely outcome

13



is simply that the resulting metafrontier is non-convex. Therefore, the basic question is to

what extent convexity is justifiable as an axiom at the metafrontier level?

Figure 2 about here

While O’Donnell, Rao, and Battese (2008, p. 237-238) do recognise the importance of

non-convexity of the period t metatechnology, they nevertheless propose an estimator that

convexifies this set. Their estimator of the period t metatechnology is an estimator of the

form:6

M̂T
t,C

=

{
(xt, yt) ∈ Rm+n

+ :
St∑
s=1

λsx
t
s ≤ x,

St∑
s=1

λsy
t
s ≥ y,

St∑
s=1

λs = 1, λs ∈ R+,∀s = 1, . . . , St

}
.

(22)

Except in restrictive special cases (e.g., there is only one group - which is excluded by

default), M̂T
t,C

⊇ MT t,C with MT t,C = T t,C
1 ∪ T t,C

2 ∪ · · · ∪ T t,C
Gt . Thus, the estimator (22) is

normally biased. In other words, the convex monotonic hull of St data points is larger than

or equal to the union of Gt convex monotonic hulls of St
g data points:

cm(At) ⊇ ∪Gt

g=1cm(At
g). (23)

Except in restrictive special cases, the convex monotonic hull of the St observations is strictly

larger than the union of the Gt convex monotonic hulls.7 The basic question is then whether

this convex monotonic hull (22) offers a good approximation to the true non-convex union

of convex monotonic hulls.

This question has hardly been touched upon in the literature so far. Tiedemann, Franck-

sen, and Latacz-Lohmann (2011) are probably the first to suggest an alternative estimator

of the non-convex period t metatechnology and the associated measure of ITE (11). Their

alternative VRS DEA estimator of the ITE of firm i in period t is exactly the definition

(12) above.8 This amounts to estimating input-oriented technical efficiency with respect to

each of the group-specific frontiers, then taking the minimum of these efficiency estimates.

6O’Donnell, Rao, and Battese (2008) assume that all groups exist in all periods, and that the number of
firms in each group is the same in each period (i.e., that the dataset is balanced). Thus, their estimator is
slightly different from (22) (for a start, it uses data points from all firms in all periods).

7In the literature, one can find statements obviously violating this basic fact. For instance, Kounetas,
Mourtos, and Tsekouras (2009, p. 211) state: “It is not difcult to see that the minimal, with respect to set
inclusion, technology set satisfying the above plus the convexity condition (see related discussion in Rao et
al., 2003) is the convex hull of the jointure of all technology sets”.

8These authors describe this estimator, but offer no formal definition.
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A formal definition of an equivalent output efficiency measure using a similar enumeration

over groups is defined in Afsharian and Ahn (2015).

In practice, this estimation procedure is complicated by the fact that, except in restrictive

special cases (e.g., there is only one group - which is excluded by default), only the measure

of RITE whereby an observation is projected with respect to its own group frontier is

always well-defined, while all other projections of the same observation with respect to the

other group-frontiers may potentially be undefined. In Figure 2, for example, firms in group 1

cannot operate at point F2. Therefore, the input-oriented measure of technical efficiency with

respect to the group-1 frontier is unity divided by zero, which is mathematically undefined.9

The estimator (12) has rarely been applied so far (e.g., Huang, Ting, Lin, and Lin (2013) or

Sala-Garrido, Molinos-Senante, and Hernández-Sancho (2011)).

This computational issue disappears when using FDH estimators, because the monotonic

hull of St observations now equals the union of Gt monotonic hulls of St
g observations:

mon(At) = ∪Gt

g=1mon(At
g). (24)

While the FDH estimator of the group-g technology is given by (18), the FDH estimator of

the period t metatechnology is:

MT t,NC ≡

{
(xt, yt) ∈ Rm+n

+ :
St∑
s=1

λsx
t
s ≤ x,

St∑
s=1

λsy
t
s ≥ y,

St∑
s=1

λs = 1,

λs ∈ {0, 1} , ∀s = 1, . . . , St

}
. (25)

The associated FDH estimator of the ITE of firm i in period t directly follows definition

(11). Thus, by using FDH estimators one can avoid computing several measures of RITE,

thereby bypassing any computational problems associated with infeasibilities.

9Huang, Ting, Lin, and Lin (2013, program (9)) provide a single mathematical program defined over the
union of all group frontiers: but it risks breaking down when infeasibilities occur, in which case one must
resort to optimisation per group technology. Afsharian and Ahn (2015) offer a similar solution in the context
of defining a global Malmquist productivity index. A basic formulation of this same solution can already
been found in Cooper, Seiford, and Tone (2007, Section 7.5).
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4.3 Convexity Questioned

Obviously, the plausibility of the convexity axiom must be judged on its own and is inde-

pendent of whether it is applied at the group frontier and/or metafrontier level. In general,

the convexity axiom is justified by a time divisibility argument (see Hackman (2008, p. 39)).

Indivisibilities, externalities, increasing returns to scale, etc. can be ignored as long as pro-

duction processes are perfectly time divisible. Of course, perfect time divisibility seems like

a strong assumption in, for instance, industrial processes, since it ignores the existence of

positive setup times.

Furthermore, in the case of the metafrontier, a constructive argument is used to argue

against the convexity of the period t metatechnology: any metatechnology constructed as

the union of even convex group technologies is unlikely to be convex (unless by pure chance).

However, the same reasoning can be applied to the notion of the group technology itself: if

a group technology in, e.g., an industrial context, is constructed as a union of a series of

underlying process technologies, some of these underlying sets being non-convex, then the

resulting group technology is unlikely to be convex. Note that most industrial processes (e.g.,

cutting stock, scheduling, etc) are fraught with non-linearities and indivisibilities requiring

non-linear and/or integer programming to obtain optimal solutions (it suffices to open any

operations management handbook). Adding a managerial and administrative layer to these

non-convex industrial processes is unlikely to yield a convex group technology. Thus, the

upshot is that the convexity of the group technology need not be taken for granted, but

ideally requires testing in itself.

Briec, Kerstens, and Vanden Eeckaut (2004) already illustrated how the measurement

of technical and scale efficiencies is affected by the convexity axiom. Kerstens and Managi

(2012) show how the Luenberger productivity indicator as well as its decomposition into

technical change and efficiency change are affected by dispensing with convexity or not.

Finally, Briec, Kerstens, and Vanden Eeckaut (2004) establish theoretically, and illustrate

empirically, how the convexity axiom not only affects technologies, but also affects the level

of the cost function derived from it (see also Balaguer-Coll, Prior, and Tortosa-Ausina (2007)

for another empirical illustration).10 Thus, convexity seems to matter both from a theoretical

and empirical perspective.

Figure 3 again depicts a single-input-single-output metatechnology consisting of the

union of two group technologies (i.e., MT t = T t
1 ∪ T t

2). The data points in this figure

10In fact, WACM is implicitly based on an FDH technology: see Ray (2004).
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are, in fact, the data points that were depicted earlier in Figure 2. However, the group-

specific technologies are now assumed to be non-convex. In Figure 3, the non-convex group

technology T t
1 (resp. T t

2) consists of all points between the horizontal axis and the fron-

tier A1B1C1D1E1F1G1H1I1 (resp. A2B2C2D2E2F2G2H2I2). The convexified group-1 (resp.

group-2) technology is obtained by adding the region determined by B1C1D1E1F1 and the

triangle F1G1H1 (resp. the region determined by B2C2D2E2F2 and the triangle F2G2H2).

The period t metatechnology MT t consists of all points between the horizontal axis and

the frontier A1B1C1D1B2C2D2E2F2G2H2I2. The convexified version of MT t is obtained by

adding the regions determined by B1C1D1PB2QF1RD2E2F2 and F2G2H2. If the underlying

group technologies are non-convex, then adding these two regions yields a biased estimate

of the metafrontier.

Figure 3 about here

Thus, one can question the convexity axiom at both the group frontier and metafrontier

levels. Therefore, in the empirical section we illustrate three basic issues. (i) What is the

difference between the non-convex metafrontiers resulting from the union of non-convex and

convex group frontier technologies? Denoting the convex and non-convex estimate of ITE as

defined in (12) by ITEt,C
g (xt, yt) and ITEt,NC

g (xt, yt) respectively, we introduce a convexity-

related CRITE as:

CRITEt
g(x

t, yt) ≡
ITEt,C

g (xt, yt)

ITEt,NC
g (xt, yt)

. (26)

Again, since ITEt,C
g (xt, yt) ≤ ITEt,NC

g (xt, yt), CRITEt
g(x

t, yt) ≤ 1. This component CRITE

measures the inefficiency amount attributable to convexity operating at the non-convex meta-

frontier level due to its construction as a union of either non-convex or convex group frontiers.

(ii) What is the difference between the non-convex and convex group frontier tech-

nologies? Denoting the convex and non-convex estimate of RITE as defined in (4) by

RITEt,C
g (xt, yt) and RITEt,NC

g (xt, yt) respectively, we can following Briec, Kerstens, and

Vanden Eeckaut (2004) introduce a convexity-related CRRITE as:

CRRITEt
g(x

t, yt) ≡
RITEt,C

g (xt, yt)

RITEt,NC
g (xt, yt)

. (27)

Since RITEt,C
g (xt, yt) ≤ RITEt,NC

g (xt, yt), obviously CRRITEt
g(x

t, yt) ≤ 1. This compon-

ent CRRITE indicates the amount of inefficiency that can be specifically attributed to the

convexity axiom at the group frontier level. Note that metatechnology ratios, defined as
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ratios of the efficiency measures discussed in (i) and (ii), cannot be a priori related to one

another in terms of the effect of convexity, though its component measures can be ranked.

(iii) What is the bias introduced by convexifying the metafrontier following the approach

outlined in O’Donnell, Rao, and Battese (2008, p. 239)? This amounts to comparing the

metafrontier resulting from the union of convex group frontier technologies ITEt,C
g (xt, yt) as

defined in (12) and the estimate based on (22).

To the best of our knowledge, no single study has ever documented these issues simul-

taneously. Though some studies have covered some of these topics. For instance, De Witte

and Marques (2009) and Thieme, Prior, and Tortosa-Ausina (2013) restrict attention to

non-convex group and metatechnologies (and even robust order-m versions of both), but did

not compare with their convex counterparts. Tiedemann, Francksen, and Latacz-Lohmann

(2011) only compare convex group technologies to the correct non-convex metafrontier

defined as the union of group technologies, but they ignore the bias issue (see also Sala-

Garrido, Molinos-Senante, and Hernández-Sancho (2011)). The bias issue is only partly

documented in Huang, Ting, Lin, and Lin (2013) and in the unpublished paper of Breustedt,

Francksen, and Latacz-Lohmann (2007): the former article lists the units whose efficiency

measure is different on the true non-convex compared to the biased convexified metafron-

tiers (see their Table 4), the latter study illustrates these same differences in metafrontier

efficiency measures mainly graphically.11 But, none of these studies reports any test statistic

regarding these differences in metafrontier efficiency measures.

5 Empirical Illustration

In this section, we first present the data set used which has been adopted from an existing

article including a data set. Then, we present the empirical results.

5.1 Secondary Data Set: Chilean Hydro Power

Our sample uses 16 hydro-electric power plants from Chile observed over several years with

a monthly frequency (Atkinson and Dorfman (2009)). We limit the sample to the single year

1997, and we assume that the number of groups in this year is fixed. This allows specifying

an inter-temporal frontier covering all months, resulting in 192 observations in total. The

11Both studies mention FDH as a possibility, but do not apply it in their empirical part.
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single output is electricity generated. There is information on the quantities of three inputs:

labor, capital, and water. Except for the input capital, all remaining flow variables are

expressed in physical units. Descriptive statistics for the inputs and the single output are

available in Atkinson and Dorfman (2009).

One can distinguish two groups of hydro-electric plants in this sample: a dam (impound-

ment) forming a reservoir, and run-of-river (diversion).12 This partitions the sample of 192

observations into 60 dam plants and 132 run-of-river plants. It is well-known in the hydro-

electric power industry that the often smaller run-of-river plants are always base load plants,

while the dam plants can be employed as either base or peak load.

5.2 Empirical Results

Table 1 presents empirical results for decomposition (15) starting from convex and non-

convex group frontiers yielding both different non-convex metafrontiers. This table is struc-

tured as follows. The first three columns report results based upon the convex group frontiers,

while the last three columns list their non-convex counterpart results. The last column re-

ports the number of infeasibilities when comparing observations to the alternative groups

(in casu, there is just one cross-group comparison). The first row states the number of effi-

cient observations while the next three rows report basic descriptive statistics related to the

sample level: geometric average, standard deviation, and minimum.13 The second and third

part focuses separately on the descriptive statistics of the group of dam and the group of

run-of-river plants, respectively.

Table 1 about here

Four basic observations can be made with regard to Table 1. First, convex group frontiers

and the resulting metafrontier yield lower input efficiency measures compared to their non-

convex counterparts, an observation in concordance with other studies comparing technical

efficiency on convex and non-convex production frontiers (see supra). Non-convex group

frontiers and the metafrontier have a manifold of efficient observations compared to the

convex frontier counterparts.

Second, as a ratio of efficiency measures, the relation between convex and non-convex

metatechnology ratios cannot a priori be signed (see also supra). This clearly shows up in

12Another type of hydropower called pumped storage (a potential third group) is not present in the sample.
13The use of an geometric average guarantees that the multiplicative decomposition (15) holds exactly.
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the empirical results: while the convex MTR is lower than the non-convex MTR at the

sample level and for dam plants, the reverse holds true for run-of-river plants. The number

of efficient observations is now much closer to one another, whereby in the case of run-of-river

plants the convex case outnumbers the non-convex case by just one.

Third, the convex MTR for run-of-river plants is on average unity. In fact, for the convex

case all MTR scores are at unit level. For the non-convex MTR the average is very close

to unity: just one observation is MTR inefficient. This indicates that these run-of-river

plants could not benefit from having access to the metafrontier. Inversely, dam plants could

benefit from having access to production plans that would make them resemble more closely

to run-of-river plants. Thus, run-of-river plants seem to be an almost uniformly superior

technology. Note that the determination of inferior and superior technologies is one of the

interesting application areas that have relatively little been pursued using metafrontiers.

For example, Sala-Garrido, Molinos-Senante, and Hernández-Sancho (2011) compare four

wastewater treatment technologies and find one of these treatment technologies to dominate

all others.

Fourth, 29 organisations obtain infeasible solutions when computing some of the distances

to the convex group technologies in determining the measure (10). This amounts to about

15% of the sample.

Figure 4 displays the kernel densities of the distribution of the metafrontiers and group

frontiers in parts (a) and (b), respectively, starting off from either non-convex or convex

group frontiers.14 For both distributions it seems clear that the densities between results

starting from non-convex and convex group frontiers differ rather substantially. To formally

assess the eventual differences between convex and non-convex frontiers, we employ a test

statistic initially proposed by Li (1996) that is valid for both dependent and independent

variables.15 Note that dependency is characteristic for extremum or frontier estimators,

since efficiency levels depend, among others, on sample size. The null hypothesis of this

Li-test states that both convex and non-convex distributions for a given efficiency score and

underlying specification of technology are equal. This test is only performed at the sample

level and reported on the fifth row in Table 1. One can reject the null hypothesis of equal

distributions for both the group frontiers and the metafrontiers. However, the equality of

the convex and non-convex MTR distributions cannot be rejected.

14For reasons of comparability, a common Sheather and Jones plug-in bandwidth is used to compare both
data series at stake (see, e.g., Sheather (2004)).

15See Fan and Ullah (1999) for a refinement of the same test.

20



Figure 4 about here

Table 2 reports convexity-related inefficiencies for ITE and RITE as defined in (26) and

(27) in the two first columns. Furthermore, the last six columns document the potential bias

in estimating ITE and MTR when using convex group frontiers using the O’Donnell, Rao,

and Battese (2008) approach. The first three of these six columns compare the metafrontier

resulting from the union of convex group frontiers ITEt,C
g (xt, yt) as defined in (12) and the

estimate based on (22) (denoted Unbiased and Biased, respectively), as well as the ratio of

both estimates. The last three of these columns compare the potential bias when computing

MTR on such results. Thus, the unbiased results reported in the third and sixth columns

are in common with Table 1.

The key conclusions one can make from analysing Table 2 are the following. First,

convexity-related ITE (CRITE) amounts to about 20% on average at the sample level.

For dams this average inefficiency attributable to convexity is even higher (about 24%),

while for run-of-river plants this average inefficiency is somewhat lower (about 18%). For

21 observations, there is no convexity-related inefficiency (about 11%). Among dams, only

1 observation is convexity-related efficient, while 20 run-of-river plants are convexity-related

efficient. Second, at the sample level convexity-related inefficiency for the RITE component

(CRRITE) is about 17% on average. For dams this average inefficiency due to convexity is

now lower (about 15%), while for run-of-river plants this average inefficiency is now slightly

higher than the sample level. Note that for run-of-river plants the CRITE and CRRITE

results are identical. Both these amounts of convexity-related inefficiencies in a certain sense

just serve to document why the Li-test statistic reported above finds statistically significant

differences.

Third, estimating ITE using the convexified approach of O’Donnell, Rao, and Battese

(2008) rather than the union of convex group frontiers yields at the sample level on average

just a 1.70% difference in efficiency level. Taking a ratio of both estimates reveals a difference

of about 2.0% at the sample level. For dams this ratio is notably higher (about 5%), while for

run-of-river plants this ratio is somewhat lower (just 1%). If we plug these slightly different

estimates in the MTR, then we obtain at the sample level on average just a 2.10% difference

in efficiency level. This difference in efficiency level increases to 4.20% for dam plants and

decreases to just about 1.00% for run-of-river plants.

Figure 5 displays the kernel densities of the distribution of the metafrontiers starting off

from either the convex group frontiers, or simply as a convex monotonic hull of the whole

sample. For both distributions it may seem that the densities between both results differ
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rather substantially. To check whether these observed differences are statistically significant,

we again report a Li-test in the fifth row of Table 2. However, the equality of the unbiased

and biased efficiency distributions of the metafrontier cannot be rejected. By contrast, the

null hypothesis of equal distributions for both the resulting MTR can be rejected. Thus, the

convexification approach suggested by O’Donnell, Rao, and Battese (2008) may yield biases

in MTR estimates.

Table 2 about here

Figure 5 about here

6 Conclusions

Starting from the seminal contribution of O’Donnell, Rao, and Battese (2008), we have

restated the metafrontier approach while focusing on non-parametric specifications of group

frontiers and metafrontiers. With respect to the three main objectives of this contribution as

stated in the Introduction, we summarise results as follows. First, when starting from convex

non-parametric group frontiers, the metafrontier -conceived as a union of group technologies-

is normally non-convex. The convexification approach suggested in O’Donnell, Rao, and

Battese (2008) can yield a potential bias. Second, if convexity is deemed unsuitable, non-

convex non-parametric group frontiers yield another non-convex metafrontier. We have

elaborated on the reasons why convexity of group frontiers and metafrontiers need not be

assumed a priori, but should ideally be empirically tested.

Third, the similarities and differences of both convex and non-convex group frontiers and

the resulting different non-convex metafrontiers have been empirically illustrated using sec-

ondary data. Comparing the decompositions of input efficiency estimated on a metafrontier

into a residual group efficiency measure and a metatechnology ratio starting from either

convex or non-convex group frontiers yields the following results. Both the input efficiency

estimated on the metafrontier and the residual group efficiency measure are significantly

different when estimated from convex or non-convex group frontiers. However, the resulting

metatechnology ratios are not significantly different for our sample.

An additional perspective on these significant differences is obtained from computing

convexity-related efficiency components: about 20% and 17% of these measured inefficiencies

can be directly attributed to the convexity hypothesis in itself. Finally, when comparing
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input efficiency estimated on the metafrontier using the union of convex group frontiers or

the convexification shortcut proposed in O’Donnell, Rao, and Battese (2008), we find a small

bias that happens to be statistically insignificant. However, if we plug these estimates into

the metatechnology ratio, we obtain a statistically significant difference.

Hence, the conclusion is that users of the metafrontier methodology should beware to

correctly specify the non-convex metafrontier as a union of either convex or non-convex

group frontiers. The shortcut suggested in the seminal contribution of O’Donnell, Rao, and

Battese (2008) may lead to erroneous results.

Finally, it is clear that further research is welcome to verify how the wide variety of

metafrontier applications hinted at in Section 1 are affected by our findings and how their

corresponding methodologies eventually need to be refined. Some first steps seem to have

been taken by Afsharian and Ahn (2015) when developing some variation on the primal

Malmquist productivity index. Furthermore, we can briefly indicate whether and how this

approach can be transposed to alternative frontier methodologies. While adopting this me-

ticulous construction of a metafrontier should be rather straightforward in a deterministic

parametric approach, its implications for the far more popular stochastic frontier model

remain to be explored.
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“Decomposing the Productivity Differences between Hospitals in the Nordic Countries,”

Journal of Productivity Analysis, 43(3), 281–293.

Kontolaimou, A., and K. Tsekouras (2010): “Are Cooperatives the Weakest Link in

European Banking? A Non-Parametric Metafrontier Approach,” Journal of Banking &

Finance, 34(8), 1946–1957.

Kounetas, K., I. Mourtos, and K. Tsekouras (2009): “Efficiency Decompositions for

Heterogeneous Technologies,” European Journal of Operational Research, 199(1), 209–218.

Lau, L., and P. Yotopoulos (1989): “The Meta-production Function Approach to Tech-

nological Change in World Agriculture,” Journal of Development Economics, 31(2), 241–

269.

26



Lee, D., and J. Hwang (2011): “Network Neutrality and Difference in Efficiency among

Internet Application Service Providers: A Meta-Frontier Analysis,” Telecommunications

Policy, 35(8), 764–772.

Leleu, H. (2006): “A Linear Programming Framework for Free Disposal Hull Technologies

and Cost Functions: Primal and Dual Models,” European Journal of Operational Research,

168(2), 340–344.

Li, Q. (1996): “Nonparametric Testing of Closeness between Two Unknown Distribution

Functions,” Econometric Reviews, 15(1), 261–274.

Lipsey, R., K. Carlaw, and C. Bekar (2005): Economic Transformations: General

Purpose Technologies and Long-term Economic Growth. Oxford University Press, Oxford.

Llorca, M., L. Orea, and M. Pollitt (2014): “Using the Latent Class Approach

to Cluster Firms in Benchmarking: An Application to the US Electricity Transmission

Industry,” Operations Research Perspectives, 1(1), 6–17.

Maddala, G., and R. Roberts (1981): “Statistical Cost Analysis Re-Revisited: Com-

ment,” Quarterly Journal of Economics, 96(1), 177–182.

Moreira, V., and B. Bravo-Ureta (2010): “Technical Efficiency and Metatechnology

Ratios for Dairy Farms in Three Southern Cone Countries: A Stochastic Meta-Frontier

Model,” Journal of Productivity Analysis, 33(1), 33–45.

O’Donnell, C. (2014): “An Economic Approach to Identifying the Drivers of Productiv-

ity Change in the Market Sectors of the Australian Economy,” Paper Presented at the

Econometric Society Australasian Meeting, Hobart, 1-4 July.

O’Donnell, C., D. Rao, and G. Battese (2008): “Metafrontier Frameworks for the

Study of Firm-Level Efficiencies and Technology Ratios,” Empirical Economics, 34(1),

231–255.

Oh, D.-h., and J.-d. Lee (2010): “A Metafrontier Approach for Measuring Malmquist

Productivity Index,” Empirical Economics, 38(1), 47–64.

Ray, S. (2004): Data Envelopment Analysis: Theory and Techniques for Economics and

Operations Research. Cambridge University Press, Cambridge.

Sala-Garrido, R., M. Molinos-Senante, and F. Hernández-Sancho (2011):

“Comparing the Efficiency of Wastewater Treatment Technologies through a DEA Meta-

frontier Model,” Chemical Engineering Journal, 173(3), 766–772.

27



Samoilenko, S., and K.-M. Osei-Bryson (2010): “Determining Sources of Relative

Inefficiency in Heterogeneous Samples: Methodology using Cluster Analysis, DEA and

Neural Networks,” European Journal of Operational Research, 206(2), 479–487.

Sheather, S. (2004): “Density Estimation,” Statistical Science, 19(4), 588–597.

Thanassoulis, E., R. Khanjani Shiraz, and N. Maniadakis (2015): “A Cost Malm-

quist Productivity Index Capturing Group Performance,” European Journal of Operational

Research, 241(3), 796–805.

Thieme, C., D. Prior, and E. Tortosa-Ausina (2013): “A Multilevel Decomposition

of School Performance Using Robust Nonparametric Frontier Techniques,” Economics of

Education Review, 32, 104–121.

Tiedemann, T., T. Francksen, and U. Latacz-Lohmann (2011): “Assessing the

Performance of German Bundesliga Football Players: A Non-Parametric Metafrontier

Approach,” Central European Journal of Operations Research, 19(4), 571–587.

Trueblood, M. (1989): “Agricultural Production Function Estimates from Aggregate

Intercountry Observations: A Selected Survey,” Canadian Journal of Agricultural Eco-

nomics, 37(4), 1045–1060.

Tulkens, H., and P. Vanden Eeckaut (1995): “Non-parametric Efficiency, Progress

and Regress Measures for Panel Data: Methodological Aspects,” European Journal of

Operational Research, 80(3), 474–499.

Warning, S. (2004): “Performance Differences in German Higher Education: Empirical

Analysis of Strategic Groups,” Review of Industrial Organization, 24(4), 393–408.

28



Figure 1: Monotonic, Convex and Convex Monotonic Hulls of the Same Set
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Figure 2: Convex Group-Specific Technologies and Non-Convex Metafrontier
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Figure 3: Non-Convex Group-Specific Technologies and Non-Convex Metafrontier
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Figure 4: Kernel Density Estimates of (a) Metafrontier and (b) Group Frontier Estimates
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Figure 5: Unbiased and Biased Metafrontiers Estimates
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Table 1: Convex and Non-Convex Group Frontiers: ITE Decomposition (15)

Convex Group Fr. Non-convex Group Fr.

ITE RITE IMR ITE RITE IMR Inf.

Sample #Eff. Obs. 21 24 163 154 168 175

N=192 Geom. Mean 0.7582 0.8046 0.9424 0.9391 0.9629 0.9752

Stand. Dev. 0.2009 0.1791 0.1260 0.1378 0.1076 0.0878

Min. 0.1325 0.2094 0.3740 0.3154 0.3154 0.3866

Li-test† 57.50∗∗∗ 57.67∗∗∗ 0.53

Dam #Eff. Obs. 1 4 31 39 52 44

N=62 Geom. Mean 0.6751 0.8163 0.82705 0.8811 0.9547 0.9229 29

Stand. Dev. 0.2141 0.1645 0.18961 0.1867 0.1181 0.1495

Min. 0.1325 0.2681 0.37400 0.3212 0.3212 0.3866

Run #Eff. Obs. 20 20 132 115 116 131

-of-river Geom. Mean 0.7994 0.7994 1.0000 0.9667 0.9667 1.0000 0

N=132 Stand. Dev. 0.1853 0.1853 0.0000 0.1024 0.1024 0.0004

Min. 0.2094 0.2094 1.0000 0.3154 0.3154 0.9953

† Li test: critical values at 1% level = 2.33 (∗∗∗); 5% level = 1.64 (∗∗); 10% level = 1.28 (∗).
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